-
公开(公告)号:US11170167B2
公开(公告)日:2021-11-09
申请号:US16364777
申请日:2019-03-26
申请人: TENCENT AMERICA LLC
发明人: Kun Xu , Chao Weng , Chengzhu Yu , Dong Yu
IPC分类号: G06F40/274 , G06F40/30 , G06F40/232 , G06F40/284
摘要: Method and apparatus for automatically predicting lexical sememes using a lexical dictionary, comprising inputting a word, retrieving the word's semantic definition and sememes corresponding to the word from an online dictionary, setting each of the retrieved sememes as a candidate sememe, inputting the word's semantic definition and candidate sememe, and estimating the probability that the candidate sememe can be inferred from the word's semantic definition.
-
公开(公告)号:US11610060B2
公开(公告)日:2023-03-21
申请号:US17469540
申请日:2021-09-08
申请人: TENCENT AMERICA LLC
发明人: Kun Xu , Chao Weng , Chengzhu Yu , Dong Yu
IPC分类号: G06F40/274 , G06F40/30 , G06F40/232 , G06F40/284
摘要: Method and apparatus for automatically predicting lexical sememes using a lexical dictionary, comprising inputting a word, retrieving the word's semantic definition and sememes corresponding to the word from an online dictionary, setting each of the retrieved sememes as a candidate sememe, inputting the word's semantic definition and candidate sememe, and estimating the probability that the candidate sememe can be inferred from the word's semantic definition.
-
公开(公告)号:US20230196087A1
公开(公告)日:2023-06-22
申请号:US17510782
申请日:2021-10-26
申请人: TENCENT AMERICA LLC
发明人: Lifeng Jin , Linfeng Song , Kun Xu , Dong Yu
CPC分类号: G06N3/08 , G06K9/6256 , G06N3/0454
摘要: There is included a method and apparatus comprising computer code for a joint training method using neural networks with noise-robust losses comprising encoding input tokens from a noisy dataset into input vectors using an input encoder; predicting a label based on the input vectors using a classifier model; calculating a beta value based on the input vectors and the label using a label quality predictor model, wherein the beta value is instance-specific for each training instance; and j oint training more than one model using a first modified loss function based on the beta value and an entropy value.
-
-