UNCERTAINTY ANALYSIS OF EVIDENTIAL DEEP LEARNING NEURAL NETWORKS
Abstract:
Disclosed is an example solution to analyze uncertainty of an evidential deep learning neural network with dissonance regularization and recurrent priors. An example apparatus includes processor circuitry to at least one of instantiate or execute the machine readable instructions to receive a first predicted classification of a first input of an evidential deep learning neural network (EVDL NN), identify a first uncertainty metric associated with the EVDL NN, the first uncertainty metric corresponding to the first input of the EVDL NN, calculate a first dissonance score based on the first uncertainty metric, and when the first dissonance score satisfies a threshold, assign the first predicted classification to the first input.
Information query
Patent Agency Ranking
0/0