AUTOMATED, PARAMETER-PATTERN-DRIVEN, DATA MINING SYSTEM BASED ON CUSTOMIZABLE CHAIN OF MACHINE-LEARNING-STRUCTURES PROVIDING AN AUTOMATED DATA-PROCESSING PIPELINE, AND METHOD THEREOF
摘要:
Proposed is a parameter pattern-driven, data mining system and corresponding method with a knowledge extraction engine based on a customizable chain of machine-learning-structures providing an automated pipeline for data processing of complex data structures with a hidden pattern detection for triggering automated under-writing processes. A plurality of digital risk-transfer policies is assessed via a data interface and storable captured by a persistence repository unit of the parameter pattern-driven, data mining system. The digital policy at least comprises premium parameter values and/or deducible parameter values and/or risk-transfer type definition parameter values and/or policy limits parameter values and/or exclusion parameter values and/or riders/addit parameter values. The parameter pattern-driven, data mining system comprises a chained series of machine learning modeling structures automatically assessing and parsing digital risk-transfer policies of a policyholder, and automatically translating contractual language of the digital policy into actionable offers for the policyholder by generating appropriate new digital risk-transfer policies for automated under writing by the policyholder.
信息查询
0/0