Compensation for receiver and satellite signal differences
Abstract:
A method for compensating for the differences in time varying signals S(t;R;S) received and processed by two signal receiver/processors (R.sub.2 and R.sub.3), located at the same site, from two signal sources (S.sub.2 and S.sub.3) that are spaced apart from the receiver/processors. A receiver/processor (R.sub.1) is chosen as a baseline, and double difference signals DD(t;R.sub.1 ;R.sub.2 ;S.sub.2 ;S.sub.3)=S(t;R.sub.1 ;S.sub.2)-S(t;R.sub.1 ;S.sub.3)-S(t;R.sub.2 ;S.sub.2)+S(t;R.sub.2 ;S.sub.3) and DD(t;R.sub.1 ;R.sub.3 ;S.sub.2 ;S.sub.3)=S(t;R.sub.1 ;S.sub.2)-S(t;R.sub.1 ;S.sub.3)-S(t;R.sub.3 ;S.sub.2)+S(t;R.sub.3 ;S.sub.3) are formed. The respective time averages DD(R.sub.1 ;R.sub.2 ;S.sub.2 ;S.sub.3).sub.avg and DD(R.sub.1 ;R.sub.3 ;S.sub.2 ;S.sub.3).sub.avg of these two double difference signals are formed, using a time interval of length T lying in a preferred range given by 120 sec.ltoreq.T.ltoreq.1800 sec. First difference signals, DDC(t;R.sub.1 ;R.sub.2 ;S.sub.2 ;S.sub.3)=DD(t;R.sub.1 ;R.sub.2 ;S.sub.2 ;S.sub.3)- DD(R.sub.1 ;R.sub.2 ;S.sub.2 ;S.sub.3).sub.avg and DDC(t;R.sub.1 ;R.sub.3 ;S.sub.2 ;S.sub.3)=DD(t;R.sub.1 ;R.sub.3 ;S.sub.2 ;S.sub.3)-DD(R.sub.1 ;R.sub.3 ;S.sub.2 ;S.sub.3).sub.avg, are formed. A time varying compensated signal DDC(t;R.sub.2 ;R.sub.3 ;S.sub.2 ;S.sub.3)=DDC(t;R.sub.1 ;R.sub.2 ;S.sub.2 ;S.sub.3)-DDC(t;R.sub.1 ;R.sub.3 ;S.sub.2 ;S.sub.3) is then formed that compensates for the differences in signals that are contemporaneously received from the signal sources S.sub.2 and S.sub.3 at the receiver/processors R.sub.2 and R.sub.3 located at the same site. This compensated signal has the property that its time varying value, when averaged over a time interval of length T, has a magnitude that is either zero or is less than a small positive threshold value. This compensation approach can be extended to receipt of more than one kind of coded signal, such as P code or C/A code in the presence of or absence of anti-spoofing, each of which is processed differently by a receiver/processor. This compensation can be used for any type of receiver/processor and is especially useful in compensation for receiver/processors used in Satellite Positioning Systems, such as GPS and GLONASS.
Public/Granted literature
Information query
Patent Agency Ranking
0/0