Methods and apparatus for reinforcement learning
Abstract:
We describe a method of reinforcement learning for a subject system having multiple states and actions to move from one state to the next. Training data is generated by operating on the system with a succession of actions and used to train a second neural network. Target values for training the second neural network are derived from a first neural network which is generated by copying weights of the second neural network at intervals.
Public/Granted literature
Information query
Patent Agency Ranking
0/0