-
公开(公告)号:US20170278018A1
公开(公告)日:2017-09-28
申请号:US15619393
申请日:2017-06-09
Applicant: Google Inc.
Inventor: Volodymyr Mnih , Koray Kavukcuoglu
CPC classification number: G06N20/00 , A63F13/67 , G06N3/0454 , G06N3/08
Abstract: We describe a method of reinforcement learning for a subject system having multiple states and actions to move from one state to the next. Training data is generated by operating on the system with a succession of actions and used to train a second neural network. Target values for training the second neural network are derived from a first neural network which is generated by copying weights of the second neural network at intervals.
-
公开(公告)号:US20170140270A1
公开(公告)日:2017-05-18
申请号:US15349950
申请日:2016-11-11
Applicant: Google Inc.
Inventor: Volodymyr Mnih , Adrià Puigdomènech Badia , Alexander Benjamin Graves , Timothy James Alexander Harley , David Silver , Koray Kavukcuoglu
CPC classification number: G06N3/08 , G06N3/04 , G06N3/0454
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for asynchronous deep reinforcement learning. One of the systems includes a plurality of workers, wherein each worker is configured to operate independently of each other worker, and wherein each worker is associated with a respective actor that interacts with a respective replica of the environment during the training of the deep neural network.
-
公开(公告)号:US20160358073A1
公开(公告)日:2016-12-08
申请号:US15174020
申请日:2016-06-06
Applicant: Google Inc.
Inventor: Guillaume Desjardins , Karen Simonyan , Koray Kavukcuoglu , Razvan Pascanu
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing inputs using a neural network system that includes a whitened neural network layer. One of the methods includes receiving an input activation generated by a layer before the whitened neural network layer in the sequence; processing the received activation in accordance with a set of whitening parameters to generate a whitened activation; processing the whitened activation in accordance with a set of layer parameters to generate an output activation; and providing the output activation as input to a neural network layer after the whitened neural network layer in the sequence.
Abstract translation: 方法,系统和装置,包括在计算机存储介质上编码的计算机程序,用于使用包含白化神经网络层的神经网络系统处理输入。 其中一种方法包括在序列中接收由白化神经网络层之前的层产生的输入激活; 根据一组增白参数来处理接收到的激活以产生白化激活; 根据一组层参数处理白化激活以产生输出激活; 并且在序列中的白化神经网络层之后,将输出激活提供给神经网络层的输入。
-
4.
公开(公告)号:US20160232445A1
公开(公告)日:2016-08-11
申请号:US15016173
申请日:2016-02-04
Applicant: Google Inc.
Inventor: Praveen Deepak Srinivasan , Rory Fearon , Cagdas Alcicek , Arun Sarath Nair , Samuel Blackwell , Vedavyas Panneershelvam , Alessandro De Maria , Volodymyr Mnih , Koray Kavukcuoglu , David Silver , Mustafa Suleyman
CPC classification number: G06N3/08 , G06N3/0454 , G06N3/0472
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for distributed training of reinforcement learning systems. One of the methods includes receiving, by a learner, current values of the parameters of the Q network from a parameter server, wherein each learner maintains a respective learner Q network replica and a respective target Q network replica; updating, by the learner, the parameters of the learner Q network replica maintained by the learner using the current values; selecting, by the learner, an experience tuple from a respective replay memory; computing, by the learner, a gradient from the experience tuple using the learner Q network replica maintained by the learner and the target Q network replica maintained by the learner; and providing, by the learner, the computed gradient to the parameter server.
Abstract translation: 方法,系统和装置,包括在计算机存储介质上编码的计算机程序,用于强化学习系统的分布式训练。 其中一种方法包括从学习者接收来自参数服务器的Q网络参数的当前值,其中每个学习者维护相应的学习者Q网络副本和相应的目标Q网络副本; 由学习者更新由学习者使用当前值维护的学习者Q网络副本的参数; 由学习者选择来自相应回放记忆的经验元组; 由学习者使用由学习者维护的学习者Q网络副本和学习者维护的目标Q网络副本的经验元组进行计算; 并且由学习者将计算的梯度提供给参数服务器。
-
公开(公告)号:US09679258B2
公开(公告)日:2017-06-13
申请号:US14097862
申请日:2013-12-05
Applicant: Google Inc.
Inventor: Volodymyr Mnih , Koray Kavukcuoglu
CPC classification number: G06N99/005 , A63F13/67 , G06N3/0454 , G06N3/08
Abstract: We describe a method of reinforcement learning for a subject system having multiple states and actions to move from one state to the next. Training data is generated by operating on the system with a succession of actions and used to train a second neural network. Target values for training the second neural network are derived from a first neural network which is generated by copying weights of the second neural network at intervals.
-
公开(公告)号:US20170337464A1
公开(公告)日:2017-11-23
申请号:US15396319
申请日:2016-12-30
Applicant: Google Inc.
Inventor: Neil Charles Rabinowitz , Guillaume Desjardins , Andrei-Alexandru Rusu , Koray Kavukcuoglu , Raia Thais Hadsell , Razvan Pascanu , James Kirkpatrick , Hubert Josef Soyer
CPC classification number: G06F17/16 , G06N3/0454
Abstract: Methods and systems for performing a sequence of machine learning tasks. One system includes a sequence of deep neural networks (DNNs), including: a first DNN corresponding to a first machine learning task, wherein the first DNN comprises a first plurality of indexed layers, and each layer in the first plurality of indexed layers is configured to receive a respective layer input and process the layer input to generate a respective layer output; and one or more subsequent DNNs corresponding to one or more respective machine learning tasks, wherein each subsequent DNN comprises a respective plurality of indexed layers, and each layer in a respective plurality of indexed layers with index greater than one receives input from a preceding layer of the respective subsequent DNN, and one or more preceding layers of respective preceding DNNs, wherein a preceding layer is a layer whose index is one less than the current index.
-
公开(公告)号:US20160358038A1
公开(公告)日:2016-12-08
申请号:US15174133
申请日:2016-06-06
Applicant: Google Inc.
Inventor: Maxwell Elliot Jaderberg , Karen Simonyan , Andrew Zisserman , Koray Kavukcuoglu
CPC classification number: G06K9/527 , G06K9/03 , G06K9/4628 , G06N3/0454 , G06N3/084 , G06N3/088
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing inputs using an image processing neural network system that includes a spatial transformer module. One of the methods includes receiving an input feature map derived from the one or more input images, and applying a spatial transformation to the input feature map to generate a transformed feature map, comprising: processing the input feature map to generate spatial transformation parameters for the spatial transformation, and sampling from the input feature map in accordance with the spatial transformation parameters to generate the transformed feature map.
Abstract translation: 方法,系统和装置,包括在计算机存储介质上编码的计算机程序,用于使用包括空间变换器模块的图像处理神经网络系统处理输入。 其中一种方法包括接收从一个或多个输入图像导出的输入特征图,以及将空间变换应用于输入特征图以产生变换后的特征图,包括:处理输入特征图以产生空间变换参数 空间变换,并根据空间变换参数从输入特征图进行采样,生成变换后的特征图。
-
-
-
-
-
-