Multi-task conditional random field models for sequence labeling
Abstract:
Embodiments of a computer-implemented method for automatically analyzing a conversational sequence between multiple users are disclosed. The method includes receiving signals corresponding to a training dataset including multiple conversational sequences; extracting a feature from the training dataset based on predefined feature categories; formulating multiple tasks for being learned from the training dataset based on the extracted feature, each task related to a predefined label; and providing a model for each formulated task, the model including a set of parameters common to the tasks. The set includes an explicit parameter, which is explicitly shared with each of the formulated tasks. The method further includes optimizing a value of the explicit parameter to create an optimized model; creating a trained model for the formulated tasks using the optimized value of the explicit parameter; and assigning predefined labels for the formulated tasks to a live dataset based on the corresponding trained model.
Public/Granted literature
Information query
Patent Agency Ranking
0/0