MULTI-TASK CONDITIONAL RANDOM FIELD MODELS FOR SEQUENCE LABELING
    1.
    发明申请
    MULTI-TASK CONDITIONAL RANDOM FIELD MODELS FOR SEQUENCE LABELING 有权
    用于序列标签的多任务条件随机场模型

    公开(公告)号:US20160162804A1

    公开(公告)日:2016-06-09

    申请号:US14564138

    申请日:2014-12-09

    CPC classification number: G06N99/005 G06Q30/016

    Abstract: Embodiments of a computer-implemented method for automatically analyzing a conversational sequence between multiple users are disclosed. The method includes receiving signals corresponding to a training dataset including multiple conversational sequences; extracting a feature from the training dataset based on predefined feature categories; formulating multiple tasks for being learned from the training dataset based on the extracted feature, each task related to a predefined label; and providing a model for each formulated task, the model including a set of parameters common to the tasks. The set includes an explicit parameter, which is explicitly shared with each of the formulated tasks. The method further includes optimizing a value of the explicit parameter to create an optimized model; creating a trained model for the formulated tasks using the optimized value of the explicit parameter; and assigning predefined labels for the formulated tasks to a live dataset based on the corresponding trained model.

    Abstract translation: 公开了一种用于自动分析多个用户之间的会话序列的计算机实现的方法的实施例。 该方法包括接收对应于包括多个会话序列的训练数据集的信号; 基于预定义的特征类别从训练数据集中提取特征; 基于提取的特征,从训练数据集中学习多个任务,每个任务与预定义的标签相关; 并为每个制定的任务提供一个模型,该模型包括一组任务共同的参数。 该集合包括一个显式参数,它与每个已编制的任务明确共享。 该方法还包括优化显式参数的值以创建优化的模型; 使用显式参数的优化值为拟定的任务创建一个训练有素的模型; 并根据相应的经过训练的模型,将配制的任务的预定义标签分配给活动数据集。

    METHODS AND SYSTEMS FOR AUTOMATIC ANALYSIS OF CONVERSATIONS BETWEEN CUSTOMER CARE AGENTS AND CUSTOMERS
    2.
    发明申请
    METHODS AND SYSTEMS FOR AUTOMATIC ANALYSIS OF CONVERSATIONS BETWEEN CUSTOMER CARE AGENTS AND CUSTOMERS 有权
    客户关怀代理人和客户之间的对话自动分析的方法和系统

    公开(公告)号:US20160162474A1

    公开(公告)日:2016-06-09

    申请号:US14564170

    申请日:2014-12-09

    Abstract: The technical solution under the present disclosure automatically analyzes conversations between users by receiving a training dataset having a text sequence including sentences of a conversation between the users; extracting feature(s) from the training dataset based on features; providing equation(s) for a plurality of tasks, the equation(s) being a mathematical function for calculating value of a parameter for each of the tasks based on the extracted feature; determining value of the parameter for tasks by processing the equation(s); assigning label(s) to each of the sentences based on the determined value of the parameter, a first label being selected from a plurality of first labels, and a second label being selected from a number of second labels; and storing and maintaining with the database a pre-defined value of the parameter, first labels, conversations, second labels, a test dataset, equation(s), and pre-defined features.

    Abstract translation: 本公开的技术方案通过接收具有包括用户之间的会话的句子的文本序列的训练数据集来自动分析用户之间的对话; 基于特征从训练数据集中提取特征; 提供多个任务的等式,所述方程式是用于基于所提取的特征来计算每个任务的参数的值的数学函数; 通过处理方程确定任务参数的值; 基于所确定的参数值,从多个第一标签中选择第一标签和从多个第二标签中选择的第二标签,将标签分配给每个句子; 并且使用数据库存储和维护参数的预定义值,第一标签,对话,第二标签,测试数据集,等式和预定义的特征。

    Multi-task conditional random field models for sequence labeling

    公开(公告)号:US09785891B2

    公开(公告)日:2017-10-10

    申请号:US14564138

    申请日:2014-12-09

    CPC classification number: G06N99/005 G06Q30/016

    Abstract: Embodiments of a computer-implemented method for automatically analyzing a conversational sequence between multiple users are disclosed. The method includes receiving signals corresponding to a training dataset including multiple conversational sequences; extracting a feature from the training dataset based on predefined feature categories; formulating multiple tasks for being learned from the training dataset based on the extracted feature, each task related to a predefined label; and providing a model for each formulated task, the model including a set of parameters common to the tasks. The set includes an explicit parameter, which is explicitly shared with each of the formulated tasks. The method further includes optimizing a value of the explicit parameter to create an optimized model; creating a trained model for the formulated tasks using the optimized value of the explicit parameter; and assigning predefined labels for the formulated tasks to a live dataset based on the corresponding trained model.

    SYSTEM AND METHOD FOR CLASSIFICATION OF MICROBLOG POSTS BASED ON IDENTIFICATION OF TOPICS
    6.
    发明申请
    SYSTEM AND METHOD FOR CLASSIFICATION OF MICROBLOG POSTS BASED ON IDENTIFICATION OF TOPICS 审中-公开
    基于主题识别的微博位置分类系统与方法

    公开(公告)号:US20170075991A1

    公开(公告)日:2017-03-16

    申请号:US15098488

    申请日:2016-04-14

    Abstract: A method for assigning a topic to a collection of microblog posts may include, by an acquisition module, receiving from at least one messaging service server, a plurality of posts, wherein each of the plurality of posts comprise post content; by a generation module, analyzing the posts and extract, from at least one of the posts, a link with an address to an external document; and, by the acquisition module, accessing the external document that is associated with the address and fetch external content associated with the document. The method may also include by the generation module: analyzing the post content to identify at least one label for each post, for each post that includes a link, analyzing the external content to identify a topic, and using a topic modeling technique to generate a trained topic model comprising a plurality of topics and a plurality of associated words.

    Abstract translation: 用于将主题分配给微博帖子的集合的方法可以包括由获取模块从至少一个消息服务服务器接收多个帖子,其中所述多个帖子中的每一个包括帖子内容; 通过生成模块,从至少一个帖子分析帖子并提取与地址到外部文档的链接; 以及由所述获取模块访问与所述地址相关联的外部文档并获取与所述文档相关联的外部内容。 该方法还可以包括:生成模块:分析帖子内容以针对每个帖子识别至少一个标签,对于包括链接的每个帖子,分析外部内容以识别主题,以及使用主题建模技术来生成 训练话题模型包括多个主题和多个关联词。

    SYSTEM AND METHOD FOR LABELING MESSAGES FROM CUSTOMER-AGENT INTERACTIONS ON SOCIAL MEDIA TO IDENTIFY AN ISSUE AND A RESPONSE
    7.
    发明申请
    SYSTEM AND METHOD FOR LABELING MESSAGES FROM CUSTOMER-AGENT INTERACTIONS ON SOCIAL MEDIA TO IDENTIFY AN ISSUE AND A RESPONSE 审中-公开
    从社会媒体上的客户代理相互关联的信息的系统和方法来识别问题和响应

    公开(公告)号:US20160203566A1

    公开(公告)日:2016-07-14

    申请号:US14593530

    申请日:2015-01-09

    Abstract: A system, method and non-transitory computer readable medium for labeling a plurality of messages from a customer-agent interaction on a social media service to identify an issue and a response are disclosed. For example, the system includes a conversation interface, a conversation database coupled to the conversation interface, a conversation analysis server coupled to the conversation database and a conversation knowledge repository coupled to the conversation analysis server. The conversation analysis server includes a preprocessing module, a dialogue act analysis module, an issue status analysis module and an issue/response identification module.

    Abstract translation: 公开了一种用于从社交媒体服务上的客户代理交互标记多个消息以识别问题和响应的系统,方法和非暂时计算机可读介质。 例如,系统包括对话界面,耦合到会话界面的对话数据库,耦合到对话数据库的对话分析服务器和耦合到对话分析服务器的会话知识库。 会话分析服务器包括预处理模块,对话动作分析模块,问题状态分析模块和问题/响应识别模块。

    EFFICIENT METHODS FOR PREDICTIVE ACTION STRATEGY OPTIMIZATION FOR RISK DRIVEN MULTI-CHANNEL COMMUNICATION
    9.
    发明申请
    EFFICIENT METHODS FOR PREDICTIVE ACTION STRATEGY OPTIMIZATION FOR RISK DRIVEN MULTI-CHANNEL COMMUNICATION 审中-公开
    用于风险驱动多通道通信的预测行动策略优化的有效方法

    公开(公告)号:US20160247232A1

    公开(公告)日:2016-08-25

    申请号:US14627040

    申请日:2015-02-20

    CPC classification number: G06Q40/06

    Abstract: Presented are a method, system, and apparatus for using a specialized computing device managing a contact center to analyze and reduce financial risk on a portfolio of accounts (such as loans, insurance claims, etc.) via determining whether and, if so, when to utilize a communication channel (such as telephone, e-mail, text message, etc.) to contact a customer regarding a monitored account. Variables are received including action history and transactions associated with the monitored account. One or more risk models associated with the monitored account are derived. Risk level is determined for the customer. The derived risk models and the determined risk level are used to generate a risk-driven campaign optimization strategy. A solution maximizing advantage considering the risk-driven campaign optimization strategy is then generated, the solution including a determination of whether to contact the customer and, if so, which communication channel to utilize at which time t.

    Abstract translation: 提出了一种使用管理联络中心的专业计算设备的方法,系统和装置,以通过确定是否和(如果是的话)分析和减少帐户组合(例如贷款,保险索赔等)的财务风险 利用通信信道(例如电话,电子邮件,短信等)来联系客户了解被监控的帐户。 收到的变量包括与受监控帐户相关联的操作历史和交易。 导出与受监控帐户相关联的一个或多个风险模型。 确定客户的风险等级。 衍生风险模型和确定的风险水平用于产生风险驱动的活动优化策略。 然后,生成考虑到风险驱动的运动优化策略的最大化解决方案的解决方案,该解决方案包括是否联系客户,以及如果是,哪个通信信道在哪个时间使用t。

    SYSTEM, METHOD AND APPARATUS FOR AUTOMATIC TOPIC RELEVANT CONTENT FILTERING FROM SOCIAL MEDIA TEXT STREAMS USING WEAK SUPERVISION
    10.
    发明申请
    SYSTEM, METHOD AND APPARATUS FOR AUTOMATIC TOPIC RELEVANT CONTENT FILTERING FROM SOCIAL MEDIA TEXT STREAMS USING WEAK SUPERVISION 审中-公开
    自动主题相关内容的系统,方法和装置使用弱监督从社会媒体文本流中过滤

    公开(公告)号:US20160117400A1

    公开(公告)日:2016-04-28

    申请号:US14877970

    申请日:2015-10-08

    Abstract: Presented are a system, method, and apparatus for automatic topic relevant content filtering from social media text streams using weak supervision. A computing device utilizes heuristic rules allowing topic filtering and a data stream data chunk identifier. A plurality of messages are transmitted as streaming message data from a social media network in real-time. The messages are split into a plurality of data stream data chunks according to the data stream data chunk identifier. A rule-based labeled data set L0 is built from one or more data instances in the first stream data chunk. An initial classifier is built based upon features of L0. The initial classifier is applied to a next data stream data chunk to build a labeled data set L1. A subset of representative instances S1 is selected from labeled data set L1. A first representative classifier C1 is constructed from representative instance S1.

    Abstract translation: 提出了一种使用弱势监控从社交媒体文本流自动主题相关内容过滤的系统,方法和装置。 计算设备利用允许主题过滤和数据流数据块标识符的启发式规则。 多个消息作为来自社交媒体网络的流消息数据被实时地发送。 消息根据数据流数据块标识符被分割成多个数据流数据块。 基于规则的标记数据集L0由第一流数据块中的一个或多个数据实例构建。 基于L0的特征构建了初始分类器。 将初始分类器应用于下一个数据流数据块以构建标记数据集L1。 从标记数据集L1中选择代表性实例S1的子集。 第一代表性分类器C1由代表性实例S1构成。

Patent Agency Ranking