Data driven evaluation and rejection of trained Gaussian process-based wireless mean and standard deviation models
摘要:
Disclosed are apparatus and methods for providing outputs; e.g., location estimates, based on trained Gaussian processes. A computing device can determine trained Gaussian processes related to wireless network signal strengths, where a particular trained Gaussian process is associated with one or more hyperparameters. The computing device can designate one or more hyperparameters. The computing device can determine a hyperparameter histogram for values of the designated hyperparameters of the trained Gaussian processes. The computing device can determine a candidate Gaussian process associated with one or more candidate hyperparameter value for the designated hyperparameters. The computing device can determine whether the candidate hyperparameter values are valid based on the hyperparameter histogram. The computing device can, after determining that the candidate hyperparameter values are valid, add the candidate Gaussian process to the trained Gaussian processes. The computing device can provide an estimated location output based on the trained Gaussian processes.
信息查询
0/0