PRIVACY-SENSITIVE QUERY FOR LOCALIZATION AREA DESCRIPTION FILE
    1.
    发明申请
    PRIVACY-SENSITIVE QUERY FOR LOCALIZATION AREA DESCRIPTION FILE 审中-公开
    用于本地化区域描述文件的隐私检索

    公开(公告)号:US20160335275A1

    公开(公告)日:2016-11-17

    申请号:US14708970

    申请日:2015-05-11

    Applicant: Google Inc.

    Abstract: A computing system includes a datastore, a network interface, and a query module. The datastore stores a plurality of localization area description files. The network interface is to receive a request for a localization area description file from a mobile device, the request comprising a set of spatial features and at least one non-image location indicator. The query module includes a query interface to identify one or more candidate localization area description files based on one of the set of spatial features of the request and the at least one location indicator of the request, and includes a selection module to select a localization area description file from the candidate localization area description files based on the other of the set of spatial features of the request and the at least one location indicator. The query module is to provide the selected localization area description file to the mobile device.

    Abstract translation: 计算系统包括数据存储,网络接口和查询模块。 数据存储存储多个定位区域描述文件。 网络接口是从移动设备接收对定位区域描述文件的请求,该请求包括一组空间特征和至少一个非图像位置指示符。 查询模块包括一个查询界面,用于根据请求的一组空间特征和请求的至少一个位置指示符来识别一个或多个候选定位区描述文件,并且包括选择模块以选择一个定位区域 基于所述请求的所述一组空间特征和所述至少一个位置指示符中的另一个的来自候选定位区域描述文件的描述文件。 查询模块是将选定的定位区域描述文件提供给移动设备。

    Methods and systems for determining signal strength maps for wireless access points robust to measurement counts
    2.
    发明授权
    Methods and systems for determining signal strength maps for wireless access points robust to measurement counts 有权
    用于确定对测量计数坚固的无线接入点的信号强度图的方法和系统

    公开(公告)号:US09419731B2

    公开(公告)日:2016-08-16

    申请号:US14173052

    申请日:2014-02-05

    Applicant: Google Inc.

    CPC classification number: H04B17/24 H04B17/318 H04W24/04 H04W24/08 H04W24/10

    Abstract: Examples herein include methods and systems for determining signal strength maps for wireless access points robust to measurement counts. An example method comprises receiving data related to RSSI for a wireless AP for a plurality of locations of an area, and determining an intermediary signal strength map for the wireless AP based on the received data related to the RSSI for the wireless AP. The method also includes associating the intermediary signal strength map to a regularized signal strength map for the wireless AP that is based on a diffusion mapping model of signal strength. A given partition of the regularized signal strength map is linked to one partition of the intermediary signal strength map. The method also includes providing an output signal strength map for the wireless AP including values of the regularized signal strength map modified based on values of the intermediary signal strength map.

    Abstract translation: 本文的示例包括用于确定对测量计数坚固的无线接入点的信号强度图的方法和系统。 一种示例性方法包括接收关于区域的多个位置的无线AP的与RSSI有关的数据,以及基于与无线AP的RSSI相关的接收数据,确定无线AP的中间信号强度图。 该方法还包括将中间信号强度图与基于信号强度的扩散映射模型的无线AP的正则化信号强度图相关联。 正则化信号强度图的给定分区链接到中间信号强度图的一个分区。 该方法还包括提供无线AP的输出信号强度图,包括基于中间信号强度图的值修改的正则化信号强度图的值。

    Computational Complexity Reduction of Training Wireless Strength-Based Probabilistic Models from Big Data
    3.
    发明申请
    Computational Complexity Reduction of Training Wireless Strength-Based Probabilistic Models from Big Data 有权
    计算复杂度减少训练基于无线强度的概率模型从大数据

    公开(公告)号:US20160080905A1

    公开(公告)日:2016-03-17

    申请号:US14843935

    申请日:2015-09-02

    Applicant: Google Inc.

    CPC classification number: H04W4/025 H04W24/08 H04W64/00

    Abstract: Disclosed are apparatus and methods for providing outputs; e.g., location estimates, based on signal strength measurements. A computing device can receive a particular signal strength measurement, which can include a wireless-signal-emitter (WSE) identifier and a signal strength value and can be associated with a measurement location. The computing device can determine one or more bins; each bin including statistics for WSEs and associated with a bin location. The statistics can include mean and standard deviation values. The computing device can: determine a particular bin whose bin location is associated with the measurement location for the particular signal strength measurement, determine particular statistics of the particular bin associated with a wireless signal emitter identified by the WSE identifier of the particular signal strength measurement, and update the particular statistics based on the signal strength value. The computing device can provide an estimated location output based on the bins.

    Abstract translation: 公开了用于提供输出的装置和方法; 例如,基于信号强度测量的位置估计。 计算设备可以接收特定的信号强度测量,其可以包括无线信号 - 发射器(WSE)标识符和信号强度值,并且可以与测量位置相关联。 计算设备可以确定一个或多个箱; 每个bin包括WSE的统计信息并与bin位置相关联。 统计数据可以包括平均值和标准偏差值。 计算设备可以:确定其仓位置与特定信号强度测量的测量位置相关联的特定仓,确定与由特定信号强度测量的WSE标识符识别的无线信号发射器相关联的特定仓的特定统计, 并根据信号强度值更新特定统计信息。 计算设备可以基于箱提供估计的位置输出。

    Gaussian Process-Based Approach for Identifying Correlation Between Wireless Signals
    4.
    发明申请
    Gaussian Process-Based Approach for Identifying Correlation Between Wireless Signals 有权
    基于高斯过程的识别无线信号之间相关性的方法

    公开(公告)号:US20160077191A1

    公开(公告)日:2016-03-17

    申请号:US14843961

    申请日:2015-09-02

    Applicant: Google Inc.

    CPC classification number: G01S5/0278 G01S5/0036 G01S5/0252

    Abstract: Disclosed are apparatus and methods for providing outputs; e.g., location estimates, based on trained Gaussian processes modeling signals of wireless signal emitters. A computing device can determine first and second trained Gaussian processes. The respective first and second Gaussian processes can be based on first and second hyperparameter values related to first and second wireless signal emitters. The computing device can determine first and second sets of comparison hyperparameter values of the respective first and second hyperparameter values, and then determine whether the first and second sets of comparison hyperparameter values are within one or more threshold values. After determining that the first and second sets of comparison hyperparameter values are within the threshold(s), the computing device can determine the first and second Gaussian processes are dependent and then provide an estimated-location output based on a representative Gaussian process based on the first and the second Gaussian processes.

    Abstract translation: 公开了用于提供输出的装置和方法; 例如,基于经训练的高斯过程建模无线信号发射器的信号的位置估计。 计算设备可以确定第一和第二训练高斯过程。 相应的第一和第二高斯过程可以基于与第一和第二无线信号发射器相关的第一和第二超参数值。 计算设备可以确定相应的第一和第二超参数值的第一和第二组比较超参数值,然后确定第一组和第二组比较超参数值是否在一个或多个阈值内。 在确定第一和第二组比较超参数值在阈值之内时,计算设备可以确定第一和第二高斯过程是相关的,然后基于代表性的高斯过程提供基于 第一和第二高斯过程。

    Methods and Systems for Signal Diffusion Modeling for a Discretized Map of Signal Strength
    5.
    发明申请
    Methods and Systems for Signal Diffusion Modeling for a Discretized Map of Signal Strength 有权
    信号强度离散映射信号扩散建模方法与系统

    公开(公告)号:US20150223189A1

    公开(公告)日:2015-08-06

    申请号:US14169175

    申请日:2014-01-31

    Applicant: Google Inc.

    CPC classification number: H04W64/003 G01S5/0252 H04W4/06 H04W84/12 H04W92/10

    Abstract: Examples herein include methods and systems for signal diffusion modeling for a discretized map of signal. An example method includes receiving data related to RSSI for a wireless AP for a plurality of locations of an area, associating the data to a diagram of the area based on the plurality of locations of the area, determining a given partition of the diagram in which a magnitude of a given RSSI associated with the given partition is greater than or equal to a highest magnitude of a given RSSI associated with any partitions of the plurality of partitions, assigning a location of the wireless AP to be within the given partition, and applying a constraint such that a magnitude of a given RSSI associated with other respective partitions is less than or equal to a highest magnitude of a given RSSI associated with neighboring partitions of the other respective partitions.

    Abstract translation: 本文的示例包括用于信号的离散映射的信号扩散建模的方法和系统。 一个示例性方法包括接收关于区域的多个位置的用于无线AP的RSSI的数据,基于该区域的多个位置将该数据与该区域的图相关联,确定该图的给定分区,其中 与给定分区相关联的给定RSSI的大小大于或等于与多个分区中的任何分区相关联的给定RSSI的最大幅度,将无线AP的位置分配给在给定分区内,以及应用 约束使得与其他相应分区相关联的给定RSSI的幅度小于或等于与其他相应分区的相邻分区相关联的给定RSSI的最大幅度。

    Methods and Systems for Applying Weights to Information From Correlated Measurements for Likelihood Formulations Based on Time or Position Density
    6.
    发明申请
    Methods and Systems for Applying Weights to Information From Correlated Measurements for Likelihood Formulations Based on Time or Position Density 审中-公开
    基于时间或位置密度的相关测量相关测量信息权重的方法和系统

    公开(公告)号:US20150211845A1

    公开(公告)日:2015-07-30

    申请号:US14164427

    申请日:2014-01-27

    Applicant: Google Inc.

    CPC classification number: H04W4/023 H04W4/025

    Abstract: Within examples, methods and systems for applying weights to information from correlated measurements for likelihood formulations based on time or position density are described. An example method includes receiving data from sensors of a device for an estimation of movement of the device, determining measurements from the data that are collected within a threshold time of each other or collected from locations within a threshold distance of each other, determining a magnitude of a weight to apply to the determined measurements based on a number of measurements in the determined measurements, and applying, by a processor, the weight to the determined measurements to reduce influence of the determined measurements on the estimation of movement of the device.

    Abstract translation: 在示例中,描述了基于时间或位置密度对来自相关测量的可能性公式的信息应用权重的方法和系统。 一种示例性方法包括从设备的传感器接收数据以估计设备的移动,从在彼此的阈值时间内收集的数据中确定测量值,或者从彼此的阈值距离内的位置收集, 根据所确定的测量值中的测量次数应用于所确定的测量值,以及由处理器将所述权重应用于所确定的测量值,以减小所确定的测量值对所述设备的运动的估计的影响。

    Detecting transitions between physical activity
    7.
    发明授权
    Detecting transitions between physical activity 有权
    检测身体活动之间的过渡

    公开(公告)号:US09037199B1

    公开(公告)日:2015-05-19

    申请号:US14243760

    申请日:2014-04-02

    Applicant: Google Inc.

    Abstract: In one example, a method includes determining, by a processor operating in a first power mode and based on first motion data, a first activity of a user, transitioning from operating in the first power mode to operating in a second power mode, wherein the processor consumes less power while operating in the second power mode than in the first power mode, responsive to determining, while the processor is operating in the second power mode and based on second motion data, that a change in an angle relative to gravity satisfies a threshold, transitioning from operating in the second power mode to operating in the first power mode, determining, by the processor and based on second motion data, a second activity of the user, and, responsive to determining that the second activity is different from the first activity, performing an action.

    Abstract translation: 在一个示例中,一种方法包括由处理器以第一功率模式操作并基于第一运动数据确定用户的第一活动,从在第一功率模式中的操作转变为以第二功率模式操作,其中, 响应于在处理器以第二功率模式操作并且基于第二运动数据的情况下确定相对于重力的角度的变化满足一定的要求,处理器在第二功率模式下比在第一功率模式中消耗更少的功率 阈值,从在第二功率模式下运行转换到在第一功率模式下工作,由处理器和基于第二运动数据确定用户的第二活动,并且响应于确定第二活动不同于 第一个活动,执行一个动作。

    Decomposition of error components between angular, forward, and sideways errors in estimated positions of a computing device
    8.
    发明授权
    Decomposition of error components between angular, forward, and sideways errors in estimated positions of a computing device 有权
    在计算设备的估计位置的角度,前向和侧向误差之间分解误差分量

    公开(公告)号:US09476986B2

    公开(公告)日:2016-10-25

    申请号:US14176241

    申请日:2014-02-10

    Applicant: Google Inc.

    Abstract: Examples include systems and methods for decomposition of error components between angular, forward, and sideways errors in estimated positions of a computing device. One method includes determining an estimation of a current position of the computing device based on a previous position of the computing device, an estimated speed over an elapsed time, and a direction of travel of the computing device, determining a forward, sideways, and orientation change error component of the estimation of the current position of the computing device, determining a weight to apply to the forward, sideways, and orientation change error components based on average observed movement of the computing device, and using the weighted forward, sideways, and orientation change error components as constraints for determination of an updated estimation of the current position of the computing device.

    Abstract translation: 示例包括用于在计算设备的估计位置的角度,前向和侧向误差之间分解误差分量的系统和方法。 一种方法包括基于计算设备的先前位置,经过的时间的估计速度和计算设备的行进方向来确定计算设备的当前位置的估计,确定前向,侧向和定向 改变计算装置的当前位置的估计的误差分量,基于计算装置的平均观察运动确定应用于向前,侧向和方向改变误差分量的权重,以及使用加权的向前,侧向和 取向变化误差分量作为用于确定计算设备的当前位置的更新估计的约束。

    Learning geofence models directly
    9.
    发明授权
    Learning geofence models directly 有权
    直接学习地质栅栏模型

    公开(公告)号:US09349104B2

    公开(公告)日:2016-05-24

    申请号:US14037332

    申请日:2013-09-25

    Applicant: Google Inc.

    CPC classification number: G06N99/005 G06K9/6256 G06N5/025 G06N7/005 H04L67/10

    Abstract: Methods and apparatus are directed to geofencing applications that utilize machine learning. A computing device can receive a plurality of geofence-status indications, where a geofence-status indication includes training data associated with a geofence at a first location. The geofence is associated with a geographical area. The computing device trains a geofence-status classifier to determine a geofence status by providing the training data as input to the geofence-status classifier. The training data includes data for a plurality of training features. After the geofence-status classifier is trained, the computing device receives query data associated with a second location. The query data includes data for a plurality of query features. The query features include a query feature that corresponds to a training feature. The query data is input to the geofence-status classifier. After providing the query data, the trained geofence-status classifier indicates the geofence status.

    Abstract translation: 方法和设备涉及利用机器学习的地理围栏应用。 计算设备可以接收多个地理围栏状态指示,其中地理围栏状态指示包括与第一位置处的地理围栏相关联的训练数据。 地理围栏与地理区域相关联。 计算设备通过提供训练数据作为地理围栏状态分类器的输入来训练地理围栏状态分类器来确定地理位置状态。 训练数据包括用于多个训练特征的数据。 在地理围栏状态分类器被训练之后,计算设备接收与第二位置相关联的查询数据。 查询数据包括多个查询特征的数据。 查询功能包括对应于训练功能的查询功能。 将查询数据输入到地理围栏状态分类器。 在提供查询数据之后,经过训练的地理位置状态分类器指示地理位置状态。

    Methods and Systems for Adaptive Triggering of Data Collection
    10.
    发明申请
    Methods and Systems for Adaptive Triggering of Data Collection 有权
    数据采集​​自适应触发方法与系统

    公开(公告)号:US20160003972A1

    公开(公告)日:2016-01-07

    申请号:US14331945

    申请日:2014-07-15

    Applicant: Google Inc.

    CPC classification number: G05B15/02 G05B2219/2642

    Abstract: A computing system may receive a map of features in an environment. The computing system may identify one or more regions of the map for data collection. The computing system may receive sensor data from a plurality of devices. The sensor data may be associated with one or more periods of time when the sensor data was collected by the plurality of devices. The computing system may determine a likelihood of one or more devices being within a portion of the environment that corresponds to the one or more regions of the map for data collection during a future period of time. The computing device may provide a request for given sensor data from the one or more devices based on the likelihood. The given sensor data may be associated with the future period of time.

    Abstract translation: 计算系统可以在环境中接收特征图。 计算系统可以识别用于数据收集的地图的一个或多个区域。 计算系统可以从多个设备接收传感器数据。 当传感器数据被多个装置收集时,传感器数据可以与一个或多个时间段相关联。 计算系统可以确定一个或多个设备在与该地图的一个或多个区域相对应的环境的一部分内的可能性,用于在将来的时间段期间进行数据收集。 计算设备可以基于可能性从一个或多个设备提供对给定传感器数据的请求。 给定的传感器数据可能与未来的时间段相关联。

Patent Agency Ranking