基于悬浮光镊和互易定理测量散射场远场的装置及其应用

    公开(公告)号:CN117647470A

    公开(公告)日:2024-03-05

    申请号:CN202410114953.4

    申请日:2024-01-29

    Abstract: 本发明公开了一种基于悬浮光镊和互易定理测量散射场远场的装置及其应用。由颗粒投送装置和悬浮光镊部分分别投送单个纳米颗粒至捕获腔并悬浮捕获;由背景场输入调制部分将具有平面波性质的光束入射至被捕获颗粒以产生散射;通过远场成像部分和固定角度光电信号探测器分别接收和测量固定角度的散射场远场;通过散射场远场分布计算部分获得散射场远场分布。本发明使用悬浮光镊技术,能够避免颗粒受到采样衬底的影响;基于互易定理,调制背景场的入射方向并固定角度测量散射场远场,来代替传统方法改变散射场远场接收角度的过程。本发明使散射场远场的测量更便捷,方向角测量范围为[0,2π],仰角测量范围为[0,π/2),适用于识别被捕获的单个纳米颗粒形状。

    一种测量被悬浮透明介质微球位移的装置及方法

    公开(公告)号:CN117091510B

    公开(公告)日:2024-02-13

    申请号:CN202311330383.4

    申请日:2023-10-16

    Abstract: 本发明公开了一种测量被悬浮透明介质微球位移的装置及方法。本发明利用周期信号发生器、调制激光器和光强调制器对聚焦激光光强的周期调制,使得微球简谐运动的谐振频率周期性变化,进而实现对施加在微球上的外界输入加速度信号进行周期调制,然后对四象限探测器输出的被悬浮微球位移测量信号进行解调,最终实现微球位移的测量。本发明的调制解调测量方案相对已有的直接测量方案,将微球位移测量信号和噪声调制至高频段,较大程度上抑制了激光光强和指向波动等低频误差的影响,提高了被悬浮微球位移的测量精度。

    一种光学滤波装置及光功率稳定系统

    公开(公告)号:CN116931151A

    公开(公告)日:2023-10-24

    申请号:CN202310670000.1

    申请日:2023-06-07

    Abstract: 本发明涉及一种光学滤波装置及光功率稳定系统,包括支撑座、前腔镜、后腔镜和压电驱动器;所述前腔镜和所述后腔镜均可拆式安装于所述支撑座上,所述支撑座上设有沿第一方向延伸的腔体,所述前腔镜和所述后腔镜沿第一方向相对设置在所述腔体内以形成f‑p谐振腔;所述压电驱动器传动至所述前腔镜和所述后腔镜中的至少一者,以控制其沿第一方向进行移动。前腔镜和后腔镜均可拆式安装于支撑座上,即前腔镜和后腔镜能够被替换,以通过不同能量反射率的前腔镜和后腔镜组成f‑p谐振腔,利用能量反射率的变化,对f‑p谐振腔的滤波能力进行补充,从而增加f‑p谐振腔的滤波能力。

    一种用于悬浮纳米微粒的真空光镊系统

    公开(公告)号:CN116417173B

    公开(公告)日:2023-08-22

    申请号:CN202310687076.5

    申请日:2023-06-12

    Abstract: 本发明公开一种用于悬浮纳米微粒的真空光镊系统,包括真空光阱生成模块、真空腔模块、信号收集模块和起支模块;真空光阱生成模块和信号收集模块均位于真空腔模块的外部,且分别位于真空腔模块沿光路的两侧;真空光阱生成模块、真空腔模块、信号收集模块满足:真空光阱生成模块的工作距离>前腔镜的光学厚度;前腔镜的光学厚度、后腔镜的光学厚度,加上前腔镜、后腔镜之间的间距,三者之和,小于真空光阱生成模块的工作距离与信号收集模块的工作距离之和;起支模块包括起支容器、雾化器、连接管道,连接管道用于起支时连接起支容器和放气阀。本发明能够实现小型化和集成化,且真空腔体能够达到的极限真空度更高。

    一种用于悬浮纳米微粒的真空光镊系统

    公开(公告)号:CN116417173A

    公开(公告)日:2023-07-11

    申请号:CN202310687076.5

    申请日:2023-06-12

    Abstract: 本发明公开一种用于悬浮纳米微粒的真空光镊系统,包括真空光阱生成模块、真空腔模块、信号收集模块和起支模块;真空光阱生成模块和信号收集模块均位于真空腔模块的外部,且分别位于真空腔模块沿光路的两侧;真空光阱生成模块、真空腔模块、信号收集模块满足:真空光阱生成模块的工作距离>前腔镜的光学厚度;前腔镜的光学厚度、后腔镜的光学厚度,加上前腔镜、后腔镜之间的间距,三者之和,小于真空光阱生成模块的工作距离与信号收集模块的工作距离之和;起支模块包括起支容器、雾化器、连接管道,连接管道用于起支时连接起支容器和放气阀。本发明能够实现小型化和集成化,且真空腔体能够达到的极限真空度更高。

    一种基于毛细玻璃管装载的微粒转移悬浮方法及装置

    公开(公告)号:CN115938634B

    公开(公告)日:2023-06-27

    申请号:CN202310237271.8

    申请日:2023-03-13

    Abstract: 本发明公开了一种基于毛细玻璃管装载的微粒转移悬浮方法及装置。本发明在毛细管前端装载上微粒,利用线性位移台将毛细管固定并移动至势阱附近,利用细线将微粒推出毛细管,微粒被势阱力捕获并实现悬浮。本发明解决了直径在数十微米至数百微米范围的微粒无法通过喷雾法和振动脱附下落法实现转移悬浮的问题,转移悬浮成功率大于90%,避免了镊子夹持转移方法对微粒的损伤和势阱附近物体与镊子尖端产生空间干涉的问题。将装载微粒的毛细管前端置于光学显微镜下,可精确观测和筛选待悬浮的单个微粒的内部均匀性、面型和尺寸等参数。

    一种基于压电材料的精密光偏振控制器

    公开(公告)号:CN115933157A

    公开(公告)日:2023-04-07

    申请号:CN202211577640.X

    申请日:2022-12-09

    Abstract: 本发明公开了一种基于压电材料的精密光偏振控制器,包括压电驱动单元、机械传动单元、偏振单元;所述的压电驱动单元,用于使压电元件按照压电信号产生伸长运动;并反馈偏振元件的旋转角度;机械传动单元,用于将压电驱动单元输出的伸长运动传送到偏振单元;偏振单元,包括偏振元件;用于接收输入光束,并输出横向偏振光束。压电陶瓷元器件具有随外部电场信号的变化而变化的特性,通过传动机构将伸长运动转化为旋转运动,可实现偏振片不大于0.2角秒的旋转;输入电场形式可控,可以实现伸长量与时间的函数关系,最终实现光偏振的旋转效应对光动量等效应的影响。本发明可为后续光偏振在时空领域的微尺度科学研究提供了一种经济实用的方案。

    一种抗磁微粒的三维磁悬浮结构
    8.
    发明公开

    公开(公告)号:CN115864897A

    公开(公告)日:2023-03-28

    申请号:CN202211571522.8

    申请日:2022-12-08

    Abstract: 本发明公开了一种抗磁微粒的三维磁悬浮结构,包括:永磁体、锥状软磁体、抗磁微粒、无磁支架;所述的永磁体,为三对,x、y、z正交方向安装,其中有且仅有两对永磁体的磁极方向相同;所述的锥状软磁体,为三对,具有大端面和小端面,大端面和永磁体朝向中心的一端相连,小端面朝向三维磁悬浮结构中心;所述的抗磁微粒,悬浮在所述永磁体与软磁体构成的磁悬浮结构中心;所述的无磁支架,用于固定安装所述永磁体与软磁体。本发明充分利用永磁悬浮无源、低噪声、环境适应性强等优势,兼容微粒尺寸范围大,磁阱刚度高;本发明具有无指向悬浮的特点,大大拓宽了抗磁微粒磁悬浮结构在机动、旋转平台等领域的应用。

    一种用于相对重力加速度测量的装置及方法

    公开(公告)号:CN115840257A

    公开(公告)日:2023-03-24

    申请号:CN202211551370.5

    申请日:2022-12-05

    Abstract: 本发明公开一种用于相对重力加速度测量的装置及方法,该装置包括光束稳定子系统和信号探测子系统两部分,所述光束稳定子系统用于发射稳定的激光束入射信号探测子系统;信号探测子系统以四磁极结构为磁场源,并通过四象限探测器探测包含悬浮小球位移信息的光束。利用光学差分探测原理探测出悬浮小球的位移,当重力加速度变化时,悬浮小球的位置也偏离初始平衡位置,通过探测悬浮小球在重力方向的位移量与重力加速度的对应关系实现重力加速度变化的测量。本发明的装置能够悬浮质量更大的悬浮体,能够实现更高的加速度测量精度。

    一种气溶胶微弱拉曼光谱信号探测装置及其应用方法

    公开(公告)号:CN114577681B

    公开(公告)日:2022-09-09

    申请号:CN202210489287.3

    申请日:2022-05-07

    Abstract: 本发明公开了一种气溶胶微弱拉曼光谱信号探测装置及其应用方法。所述装置包括计算机、空间光调制器单元、光镊单元、气溶胶样品室、气溶胶样品室环境条件调控单元和光谱仪单元。所述应用方法:将全息图加载到空间光调制器单元;打开光镊单元的激光器,在气溶胶样品室内形成光阱阵列;向气溶胶样品室喷入待测气溶胶;光阱阵列捕获多个气溶胶;调控气溶胶样品室环境条件的相对湿度;将多个气溶胶的拉曼光谱信号收集到光谱仪单元。本发明利用空间光调制器在气溶胶样品室内形成光阱阵列,同时捕获多个气溶胶,将多个气溶胶的拉曼光谱信号同时收集到光谱仪单元,提高气溶胶微弱拉曼光谱信号的探测性能,可实现气溶胶微弱拉曼光谱信号的高分辨率探测。

Patent Agency Ranking