一种基于双轴预拉伸的可拉伸电极制备方法

    公开(公告)号:CN106847688A

    公开(公告)日:2017-06-13

    申请号:CN201710018986.9

    申请日:2017-01-11

    Applicant: 北京大学

    CPC classification number: H01L21/28506 H01L21/28

    Abstract: 本发明提供了一种基于双轴预拉伸的可拉伸电极制备方法,该方法包括可拉伸衬底材料、双轴预拉伸、导电材料淀积和预拉伸恢复;所述的可拉伸衬底材料是在承受外力的情况下易发生形变而不容易断裂的材料;所述的双轴预拉伸是对可拉伸衬底材料施加两个垂直方向的外力,使之发生双轴形变的过程;所述的导电材料淀积是利用物理、化学方法在预拉伸的衬底上制备导电薄膜的过程;所述拉伸恢复是在淀积导电材料之后,卸去衬底材料的外部载荷使衬底材料恢复到原来尺寸的过程。本发明提出的导电电极制备方法实现了高可拉伸性,高电导率,高稳定性和低成本的电极材料的制备,并且在很大的拉伸程度下具备良好的导电性能,拓展了导电材料的应用范围。

    一种具有多孔结构的可拉伸弹性体的制备方法

    公开(公告)号:CN106674585B

    公开(公告)日:2019-11-22

    申请号:CN201611148045.9

    申请日:2016-12-13

    Applicant: 北京大学

    Abstract: 本发明实施例提供了一种具有多孔结构的可拉伸弹性体的制备方法,具有极高的可控性。所述方法包括:一种具有多孔结构的可拉伸弹性体的制备方法,包括:步骤一,获取衬底;步骤二,在所述衬底上制备预定厚度的薄膜,作为牺牲层;步骤三,在所述牺牲层上制备微球阵列;步骤四,将液态材料加入到所述微球阵列的间隙中,利用热固化的方法,把所述液态材料固化成弹性体;步骤五,通过化学方法从所述弹性体中去除所述微球阵列,并使所述弹性体与所述衬底分离,生成具有多孔结构的可拉伸弹性体。本发明的制备方法具有极高的可控性。

    一种高性能的摩擦发电机及其制备方法

    公开(公告)号:CN104779832B

    公开(公告)日:2017-07-21

    申请号:CN201510138207.X

    申请日:2015-03-26

    Applicant: 北京大学

    Abstract: 本发明公开了一种高性能的摩擦发电机及其制备方法,该摩擦发电机包括依次层叠的聚合物薄膜和导电电极,以及依次层叠的聚合物绝缘层、导电电极和聚合物薄膜。该摩擦发电机的制备方法为利用单步氟碳等离子体处理工艺,在聚合物表面形成微纳结构,同时进行化学改性,从而极大的增强了被处理材料的摩擦带电能力。本发明摩擦发电机制备方法简单,易于大规模生产,并可有效的提高摩擦式发电机的输出性,具备为可穿戴设备、微型电子器件供电的能力。

    一种高密度纳米电极阵列及其制备方法

    公开(公告)号:CN102923645B

    公开(公告)日:2015-06-24

    申请号:CN201210489470.X

    申请日:2012-11-27

    Applicant: 北京大学

    Abstract: 一种高密度纳米电极阵列制备方法,在导电性好的金属或半导体基底上,将纳米金属颗粒均匀紧密单层排布,通过高温退火工艺使纳米金属颗粒与基底紧密结合,再利用等离子体处理工艺刻蚀基底,制备实现高密度高深宽比纳米电极阵列结构。本发明可利用常规微加工设备,实现纳米尺度电极阵列结构,无需特殊昂贵的纳米加工设备,降低成本,且工艺兼容性好,可实现大面积晶片级加工。且RIE与DRIE工艺均为产业成熟可靠生产工艺,通过参数调控,可控制基底刻蚀深度,即纳米阵列高度可控,可适用于不同需求下纳米电极阵列的制备。

    一种非接触式自驱动电子皮肤及其制备方法

    公开(公告)号:CN107941246B

    公开(公告)日:2019-11-22

    申请号:CN201711104078.8

    申请日:2017-11-10

    Applicant: 北京大学

    Abstract: 本发明提供了一种非接触式自驱动电子皮肤,涉及传感器和电子皮肤技术领域,包括有摩擦层薄膜,摩擦层薄膜表面均匀设有若干微结构摩擦单元;隔离保护层,隔离保护层的下表面连接有柔性衬底,柔性衬底与隔离保护层之间夹装有电极;隔离保护层上设有能够使所述摩擦层薄膜在受到外界压力时与所述柔性衬底层相互接触的接触区。本发明可实现多种运动方式的交互传感,接触分离过程使摩擦层薄膜带电,之后摩擦层薄膜可不与隔离保护层、电极、柔性衬底组成的三层结构接触而在其上空滑动,滑动的位移终点坐标可以通过分析电极接收到的电信号得到;采用自驱动的传感方式,制备工艺简单方便,可根据实际需要快捷的调整工艺参数,生产成本低,适于批量生产。

    一种单表面位置传感器及其定位方法

    公开(公告)号:CN104635984B

    公开(公告)日:2018-08-07

    申请号:CN201510030512.7

    申请日:2015-01-21

    Applicant: 北京大学

    CPC classification number: G06F3/044

    Abstract: 本发明涉及种单表面位置传感器及其定位方法,包含衬底层和感应电极;所述感应电极位于所述衬底层上方;传感器还包含摩擦层;摩擦层位于所述衬底层上方;摩擦层位于所述感应电极中间;各独立的所述感应电极通过相同的负载电阻接地;使被测物体与所述摩擦层产生至少次接触和分离,在所述各个负载电阻上产生不同的电压输出;通过分析各个电极电压的比值确定被测物体的位置;本发明的益处为:本发明提出的单表面位置传感器为主动式传感器,相较于传统传感器减少了能量使用;本发明提出的单表面位置传感器可制作为柔性透明薄膜,可广泛应用于便携式电子设备及可穿戴设备;本发明提出的单表面位置传感器工艺简单,成本低,有利于大规模生产。

    纳米级规则褶皱结构的加工方法

    公开(公告)号:CN105905868B

    公开(公告)日:2018-04-20

    申请号:CN201610224857.0

    申请日:2016-04-12

    Applicant: 北京大学

    Abstract: 本发明提供了一种纳米级规则褶皱结构的加工方法。该方法主要包括:选取并制备可拉伸基底材料,使用夹具将所述可拉伸基底材料进行预拉伸,利用氟基气体的等离子体刻蚀在所述预拉伸后的基底材料上生长氟碳聚合物材料,将生长了氟碳聚合物材料的基底材料释放,得到纳米级规则褶皱结构。本发明实施例采用在可拉伸基底材料上淀积氟碳聚合物方法制备褶皱结构,无需光刻工艺即可实现纳米级规则褶皱结构的加工制备,加工方法简单、稳定性好、并可大面积制造。本发明可以实现500nm以下褶皱结构的制备,此范围结构对材料本身透明度、反射率等参数影响很小,可极大提高其应用范围。

    一种碳纳米管可拉伸电极的制备方法

    公开(公告)号:CN106883610A

    公开(公告)日:2017-06-23

    申请号:CN201710146108.5

    申请日:2017-03-13

    Applicant: 北京大学

    Abstract: 本发明提供了一种碳纳米管可拉伸电极的制备方法。该方法包括:将碳纳米管的溶液与微球的溶液通过物理方法进行混合,形成混合液;获取玻璃衬底,将所述混合液淀积至玻璃衬底上静置晾干,形成混合物;在所述混合物上加入液态可拉伸材料,静置固化后将所述混合物从所述玻璃衬底上掲下得到碳纳米管可拉伸电极。本发明提供的方法中,制备的碳纳米管电极具有极高的可靠性,从导电机理上来看,碳纳米管构成的空间网状结构是非常有效的导电网络的构建方法,该网络能保证导电材料的某个部位的缺陷或断裂不会导致导电通路的破坏;从材料的稳定性来看,碳纳米管具有较高的物理、化学稳定性。同时,在其外表包裹的可拉伸材料使导电材料具有更好的保护。

    收集生物运动能量的摩擦式发电机及其使用方法

    公开(公告)号:CN104022677A

    公开(公告)日:2014-09-03

    申请号:CN201410188905.6

    申请日:2014-05-06

    Applicant: 北京大学

    Abstract: 本发明涉及一种基于摩擦起电及静电感应原理,用于收集生物运动能量及监测生物运动的摩擦式发电机,它包括脚底或生物体、贴于人体或生物体上的导电电极、普通地面、地或导体。所述的脚底为人脚底或生物体的脚掌,生物体为人或动物的身体,贴于人体或生物体上任意部位的导电电极作为生物体电极,从其引出导线通过负载与地或导体相连。本发明与传统的能量采集器相比,不需使用额外的功能材料、器件和导电电极,且有相当高的电压输出和很强的充电能力。本发明提出的制造方法简单、成本低、易于制作、可用性高,并且易于与传统电子器件集成。

    一种基于激光图形化的自由式微型超级电容器及制造方法

    公开(公告)号:CN106449134B

    公开(公告)日:2018-10-19

    申请号:CN201610953666.8

    申请日:2016-11-03

    Applicant: 北京大学

    Abstract: 一种基于激光图形化的自由式微型超级电容器及制造方法,属于微能源能量存储技术领域。自下而上的结构分别是固态电解质、柔性电极与金属集流体;在电纺丝纳米纤维上滴涂碳纳米管得到柔性电极。本发明提出的自由式微型超级电容器,与传统的三明治结构超级电容器相比,采用平面式叉指结构电极,极大的降低了器件厚度,提升了器件柔性,可以更好的与柔性电子器件集成,并且同时利用电纺丝纳米纤维高比表面积与碳纳米管高电导性的优势,制备轻便稳定的柔性电极,进一步提高了能量与功率密度。本发明与其他微型超级电容器相比,创新性的通过电解质转移的方式,无需额外衬底,进一步降低了器件的厚度,避免了复杂的转移工艺对器件带来可能的伤害。

Patent Agency Ranking