一种基于梯度分块自适应测量的压缩感知方法

    公开(公告)号:CN109448065A

    公开(公告)日:2019-03-08

    申请号:CN201811181710.3

    申请日:2018-10-11

    Abstract: 本发明涉及一种基于梯度分块自适应测量的压缩感知方法。该方法包括:将不重叠的基础块作为图像的划分单元,利用图像的垂直方向和水平方向的梯度计算每个基础块的平滑度,根据平滑度将图像分割成尺寸不均匀的图像块并且计算各图像块的测量率;按照图像块尺寸分类选择测量矩阵分别对各图像块进行测量,得到测量值;解码端引入向量夹角作为相似性判断标准,采用非局部低秩正则化压缩感知重构算法进行重构。本发明设计了一种不均匀分块自适应测量压缩感知方法,使其解码图像具有鲁棒性并且获得更好的重构效果。

    一种基于梯度分块自适应测量的压缩感知方法

    公开(公告)号:CN109448065B

    公开(公告)日:2023-07-25

    申请号:CN201811181710.3

    申请日:2018-10-11

    Abstract: 本发明涉及一种基于梯度分块自适应测量的压缩感知方法。该方法包括:将不重叠的基础块作为图像的划分单元,利用图像的垂直方向和水平方向的梯度计算每个基础块的平滑度,根据平滑度将图像分割成尺寸不均匀的图像块并且计算各图像块的测量率;按照图像块尺寸分类选择测量矩阵分别对各图像块进行测量,得到测量值;解码端引入向量夹角作为相似性判断标准,采用非局部低秩正则化压缩感知重构算法进行重构。本发明设计了一种不均匀分块自适应测量压缩感知方法,使其解码图像具有鲁棒性并且获得更好的重构效果。

Patent Agency Ranking