金属氧化物修饰SSE表面的电解质片和无负极固态锂电池

    公开(公告)号:CN115911524A

    公开(公告)日:2023-04-04

    申请号:CN202211412560.9

    申请日:2022-11-11

    Abstract: 本发明提供金属氧化物修饰SSE表面的电解质片和无负极固态锂电池,通过使用工业易获得Zn/Cd蒸汽在固态电解质(SSE)表面上构筑ZnOx/CdOx界面层,组装无负极固态电池后先充电使ZnOx/CdOx界面析锂,再将电池加热使ZnOx/CdOx界面与锂反应生成Zn+Li2O/Cd+Li2O离子/电子混合导体界面层MCI,MCI能显著改善固态电池中SSE与集流体界面的兼容性。制备步骤主要分为两步,第一步:低沸点金属的蒸发、及其在SSE表面的冷凝并氧化;第二步:无负极固态电池的组装与氧化物界面层的原位转换。本发明中原位生成界面层的无负极固态电池与未改性的无负极固态电池相比,其电化学性能显著提升。同时,该工艺原料来源广泛,将推动低成本、高能量密度的无负极固态电池的大规模生产。

    一种基于碲化铌一维材料及其制备方法和应用

    公开(公告)号:CN115716640A

    公开(公告)日:2023-02-28

    申请号:CN202211097468.8

    申请日:2022-09-08

    Abstract: 本发明提供一种基于碲化铌一维材料及其制备方法和应用,将铌源、碲源溶于含有钠盐溶液的溶剂中,加入表面活性剂,在反应釜中一定温度、压力下进行反应生成碲化铌。本发明制备方法简单,成本低廉,对设备要求较低,制备的碲化铌(NbTe2)材料呈一维棒状,长度为10um左右。本发明首次将将碲化铌(NbTe2)一维材料应用在锂硫电池,较强的锚定吸附能力既能吸附多硫化物、快速的电子转移能力又可催化多硫化物到硫单质的转变,削弱锂硫电池的“穿梭效应”,增强锂硫电池的长期稳定性。同时,一维棒状碲化铌(NbTe2)材料也可应用于锂离子电池材料负极,展现了较高容量特性,有较好应用前景。

    一种图案化定制的梯度电极的制备方法及其低温应用

    公开(公告)号:CN117317144B

    公开(公告)日:2024-04-16

    申请号:CN202311335562.7

    申请日:2023-10-16

    Abstract: 本发明公开了一种图案化定制的梯度电极的制备方法及其低温应用,所述方法包括如下步骤:步骤一:亲锂或钠位点的构筑;步骤二:聚合物前体溶液的制备;步骤三:图案化定制的梯度电极制备。本发明通过在锂或钠金属负极表面原位构筑亲锂或钠涂层,利用高度定向的图案化处理方法在电极表面定制特殊的凹凸槽结构,形成纵深方向上其亲锂性呈梯度化分布,梯度设计不仅有效阻止了电解质和电极之间的副反应,还能协同优化电场分布,调节锂或钠离子通量和局部电流密度,实现“自下而上”的沉积模式,避免锂或钠枝晶的形成,改善电池在低温及高倍率条件下的电化学性能。

    一种硬碳-氮磷双掺杂纳米碳复合碳材料及其制备方法

    公开(公告)号:CN115663152B

    公开(公告)日:2024-03-26

    申请号:CN202211413792.6

    申请日:2022-11-11

    Abstract: 本发明公开了一种硬碳‑氮磷双掺杂纳米碳复合碳材料及其制备方法,包括以下步骤:①两步热解制备生物质衍生的硬碳内核;②掺氮和磷的金属有机络合物外壳的构筑;③热解催化外层纳米碳生长。本发明采用原料广泛的的生物质制备的低成本硬碳内核具有与生物质原料一致的大的可调的层间距,确保了钠离子的可逆脱嵌,在此基础上,通过金属源高温催化效应在硬碳外生长了一层具有高钠存贮能力、结构稳定、高库伦效率的纳米碳外壳,设计合成的氮磷双掺杂纳米碳外壳与硬碳内核相比对电解液具有更高的稳定性,纳米碳外壳通过隔绝电解液减少了硬碳相关的副反应,可极大提升复合碳材料作为钠离子电池负极材料的首次库伦效率并提高电池循环稳定性。

    一种图案化定制的梯度电极的制备方法及其低温应用

    公开(公告)号:CN117317144A

    公开(公告)日:2023-12-29

    申请号:CN202311335562.7

    申请日:2023-10-16

    Abstract: 本发明公开了一种图案化定制的梯度电极的制备方法及其低温应用,所述方法包括如下步骤:步骤一:亲锂或钠位点的构筑;步骤二:聚合物前体溶液的制备;步骤三:图案化定制的梯度电极制备。本发明通过在锂或钠金属负极表面原位构筑亲锂或钠涂层,利用高度定向的图案化处理方法在电极表面定制特殊的凹凸槽结构,形成纵深方向上其亲锂性呈梯度化分布,梯度设计不仅有效阻止了电解质和电极之间的副反应,还能协同优化电场分布,调节锂或钠离子通量和局部电流密度,实现“自下而上”的沉积模式,避免锂或钠枝晶的形成,改善电池在低温及高倍率条件下的电化学性能。

Patent Agency Ranking