一种基于迁移学习的多模态轴承故障智能诊断方法

    公开(公告)号:CN116401603A

    公开(公告)日:2023-07-07

    申请号:CN202310463832.6

    申请日:2023-04-26

    Abstract: 本发明属于机械设备故障诊断领域,具体涉及一种基于迁移学习的多模态轴承故障智能诊断方法,包括采集不同工况下的原始振动信号分别作为源域数据和目标域数据,经过预处理操作获取时域、频域两个观测角度信息,作为模型的多模态输入;构建深度迁移网络模型,通过基于注意力机制的多模态信息融合网络深度挖掘同源数据的多角度表示特征,通过标签分类器及源域标记数据保证故障类别的诊断性能,通过领域鉴别器和子类度量模块分别适配源域和目标域数据的边缘分布和条件分布,动态调整两种分布在迁移过程中的权重,最终形成动态联合分布自适应。寻找域不变特征提高模型在目标域数据上的泛化能力,提高机械设备的跨域故障智能诊断精度。

    一种不规则矩阵SPMV在GPU上的实现方法、电子设备及介质

    公开(公告)号:CN116595302A

    公开(公告)日:2023-08-15

    申请号:CN202310576060.7

    申请日:2023-05-19

    Abstract: 本发明属于船舶海上航行模拟领域,具体涉及一种不规则矩阵v在GPU上的实现方法、电子设备及介质。输入的船舶海上航行模拟矩阵数据集为COO压缩格式的文件,将其转化为CSR压缩格式;了解当前非零元分布结构,计算当前块数和临界块数下非零元平均数量,结合阈值选择决策树选择适合当前矩阵的阈值;利用行归并策略来对稀疏矩阵进行最优划分;划分后的数据采用TEB压缩格式进行存储;将相关数组从主机端传递到设备端,按照每个线程块处理一个子块,每个线程处理一行的方式在GPU上进行并行SPMV操作;并行阶段完成后将最终的计算结果从设备端传递到主机端,之后应用于船舶海上航行模拟过程中的迭代求解操作。本发明用以提高船舶海上航行模拟的SPMV算法的计算效率。

Patent Agency Ranking