一种基于卷积神经网络域适应的图像缩小方法及系统

    公开(公告)号:CN112927136B

    公开(公告)日:2022-05-10

    申请号:CN202110244689.2

    申请日:2021-03-05

    IPC分类号: G06T3/40 G06N3/04 G06N3/08

    摘要: 本发明涉及一种基于卷积神经网络域适应的图像缩小方法及系统,该方法包括以下步骤:步骤S1:对原始高分辨率的矢量图图像和位图图像进行预处理,得到用于训练的矢量图图像块和位图图像块,组成图像块数据集;步骤S2:构建域适应模块与特征重构模块;步骤S3:构建特征缩小模块,结合域适应模块与特征重构模块,构成图像缩小网络;步骤S4:构建图像缩小网络的损失函数;步骤S5:使用图像块数据集训练图像缩小网络,得到训练好的图像缩小网络;步骤S6:将原始高分辨率的测试位图图像输入到训练好的图像缩小网络,经过域适应模块和特征缩小模块,预测其缩小后的图像。该方法及系统有利于提高图像缩小后小图的质量。

    一种基于卷积神经网络域适应的图像缩小方法及系统

    公开(公告)号:CN112927136A

    公开(公告)日:2021-06-08

    申请号:CN202110244689.2

    申请日:2021-03-05

    IPC分类号: G06T3/40 G06N3/04 G06N3/08

    摘要: 本发明涉及一种基于卷积神经网络域适应的图像缩小方法及系统,该方法包括以下步骤:步骤S1:对原始高分辨率的矢量图图像和位图图像进行预处理,得到用于训练的矢量图图像块和位图图像块,组成图像块数据集;步骤S2:构建域适应模块与特征重构模块;步骤S3:构建特征缩小模块,结合域适应模块与特征重构模块,构成图像缩小网络;步骤S4:构建图像缩小网络的损失函数;步骤S5:使用图像块数据集训练图像缩小网络,得到训练好的图像缩小网络;步骤S6:将原始高分辨率的测试位图图像输入到训练好的图像缩小网络,经过域适应模块和特征缩小模块,预测其缩小后的图像。该方法及系统有利于提高图像缩小后小图的质量。