-
公开(公告)号:CN116519622B
公开(公告)日:2023-10-10
申请号:CN202310054615.1
申请日:2023-02-03
Applicant: 湖北工业大学 , 南方电网科学研究院有限责任公司
IPC: G01N21/3504
Abstract: 本发明公开了基于光程可调光谱检测的复杂混合气体检测装置及方法,该复杂混合气体检测装置包括光源,用来产生入射光束并射入光学气体池;光学气体池,其包括腔体、以及设于腔体内的反射模块组和轨道;所述腔体用来容纳气体样品;所述反射模块组用来对射入的光束进行反射;所述轨道与光束在腔体内的光路一致;探测器模块,其与所述轨道以可相对移动的方式连接,用来接收光束并获得光谱数据;通过使探测器模块相对轨道移动来改变光程;数据采集单元,用来采集探测器模块所获得的光谱数据。本发明可实现光程可调和便携检测,还可进一步提高检测准确度。
-
公开(公告)号:CN116519622A
公开(公告)日:2023-08-01
申请号:CN202310054615.1
申请日:2023-02-03
Applicant: 湖北工业大学 , 南方电网科学研究院有限责任公司
IPC: G01N21/3504
Abstract: 本发明公开了基于光程可调光谱检测的复杂混合气体检测装置及方法,该复杂混合气体检测装置包括光源,用来产生入射光束并射入光学气体池;光学气体池,其包括腔体、以及设于腔体内的反射模块组和轨道;所述腔体用来容纳气体样品;所述反射模块组用来对射入的光束进行反射;所述轨道与光束在腔体内的光路一致;探测器模块,其与所述轨道以可相对移动的方式连接,用来接收光束并获得光谱数据;通过使探测器模块相对轨道移动来改变光程;数据采集单元,用来采集探测器模块所获得的光谱数据。本发明可实现光程可调和便携检测,还可进一步提高检测准确度。
-
公开(公告)号:CN115079338A
公开(公告)日:2022-09-20
申请号:CN202210801251.4
申请日:2022-07-08
Applicant: 湖北工业大学 , 南方电网科学研究院有限责任公司
Abstract: 本发明公开一种氮掺杂碳纳米管的微纳光纤、及包含其的气体传感器,包括依次连接的激光器、氮掺杂碳纳米管的微纳光纤、检测器,氮掺杂碳纳米管的微纳光纤,包括位于中部的微纳光纤区、位于微纳光纤区两侧的单模光纤区,所述微纳光纤区包括束腰均匀区以及位于所述束腰均匀区两侧的锥形区,所述微纳光纤区沉积有氮掺杂碳纳米管层,有利于增加传感精度、提高六氟化硫检测灵敏度高。
-
公开(公告)号:CN116183541B
公开(公告)日:2023-06-23
申请号:CN202310443840.4
申请日:2023-04-24
Applicant: 南方电网科学研究院有限责任公司 , 湖北工业大学
IPC: G01N21/3504 , G01R31/392
Abstract: 本发明提供一种基于FTIR技术的气体测量方法及装置,包括以下步骤,基于朗伯比尔定律,建立气体浓度表达式;对所述气体浓度表达式中各个量进行分析,确定所述气体浓度表达式中的变量;针对所述变量建立高阶补偿模型进行优化;计算误差平方和;求得系数矩阵,完成对于所述变量的优化;光源发出的光线经过气室,然后再由两个不同波长的滤波片进行滤光,得到波长邻近的两个波长的光辐射,从而得到两组光路信息,对得到的信息进行差分处理,能够有效地降低光源和光电器件的零漂的干扰,在一定程度上消除光源抖动的干扰,然后建立高阶补偿模型,对温度、压强、电路噪声,精确测量出气体浓度。
-
公开(公告)号:CN116183541A
公开(公告)日:2023-05-30
申请号:CN202310443840.4
申请日:2023-04-24
Applicant: 南方电网科学研究院有限责任公司 , 湖北工业大学
IPC: G01N21/3504 , G01R31/392
Abstract: 本发明提供一种基于FTIR技术的气体测量方法及装置,包括以下步骤,基于朗伯比尔定律,建立气体浓度表达式;对所述气体浓度表达式中各个量进行分析,确定所述气体浓度表达式中的变量;针对所述变量建立高阶补偿模型进行优化;计算误差平方和;求得系数矩阵,完成对于所述变量的优化;光源发出的光线经过气室,然后再由两个不同波长的滤波片进行滤光,得到波长邻近的两个波长的光辐射,从而得到两组光路信息,对得到的信息进行差分处理,能够有效地降低光源和光电器件的零漂的干扰,在一定程度上消除光源抖动的干扰,然后建立高阶补偿模型,对温度、压强、电路噪声,精确测量出气体浓度。
-
公开(公告)号:CN117091722B
公开(公告)日:2024-04-26
申请号:CN202311077957.1
申请日:2023-08-25
Applicant: 南方电网科学研究院有限责任公司 , 湖北工业大学
IPC: G01K11/3206 , G01N21/41 , G01D5/353 , G01R31/392
Abstract: 本发明提供一种用于储能电池热失控的光学监测方法及光学监测装置,建立光纤环形腔计算模型,从而得到衰荡时间变化量与额外损耗之间的关系式;针对所述温度表达式中的温度进行优化;针对所述气体浓度表达式中的气体浓度进行优化;基于传统的光纤环形腔衰荡系统,使用两个光纤环来实现同一个系统,测量两个物理量,温度、气体浓度,使用光纤布拉格光栅来测量储能电池温度变化,使用经过处理的微纳光纤来进行储能电池热失控特征气体浓度变化,并且对于两组数据进行针对性优化,对于温度检测部分使用分解噪声来降噪进行处理,对于气体检测部分,使用吉布斯能来消除不同热失控气体之间的交叉干扰。
-
公开(公告)号:CN117091722A
公开(公告)日:2023-11-21
申请号:CN202311077957.1
申请日:2023-08-25
Applicant: 南方电网科学研究院有限责任公司 , 湖北工业大学
IPC: G01K11/3206 , G01N21/41 , G01D5/353 , G01R31/392
Abstract: 本发明提供一种用于储能电池热失控的光学监测方法及光学监测装置,建立光纤环形腔计算模型,从而得到衰荡时间变化量与额外损耗之间的关系式;针对所述温度表达式中的温度进行优化;针对所述气体浓度表达式中的气体浓度进行优化;基于传统的光纤环形腔衰荡系统,使用两个光纤环来实现同一个系统,测量两个物理量,温度、气体浓度,使用光纤布拉格光栅来测量储能电池温度变化,使用经过处理的微纳光纤来进行储能电池热失控特征气体浓度变化,并且对于两组数据进行针对性优化,对于温度检测部分使用分解噪声来降噪进行处理,对于气体检测部分,使用吉布斯能来消除不同热失控气体之间的交叉干扰。
-
公开(公告)号:CN116089802A
公开(公告)日:2023-05-09
申请号:CN202310364505.5
申请日:2023-04-07
Applicant: 南方电网科学研究院有限责任公司 , 湖北工业大学
Abstract: 本发明提供一种应用于光声光谱检测系统的噪声信号处理方法及装置,包括初始化粒子、利用适应度函数计算每个粒子的适应度,将所述适应度中的最大值记,并将所述最优值对应的路径记为全局最优解;内插管消声器应用至光声池的进出气口,来抑制光声池进、出气口引入的噪声,从而提高光声信号检测极限灵敏度;此外,获得更好的全局搜索和局部搜索能力,且收敛到质量更好的最优解,能够排除无关变量的干扰,找到最优解。
-
公开(公告)号:CN116825530A
公开(公告)日:2023-09-29
申请号:CN202311043813.4
申请日:2023-08-18
Applicant: 南方电网科学研究院有限责任公司 , 广东电网有限责任公司东莞供电局
Inventor: 黄之明 , 汪万伟 , 钱海 , 钟荣富 , 卓然 , 李元佳 , 廖新征 , 黄杰明 , 罗炜 , 陈世昌 , 罗颜 , 张承周 , 陈秋霖 , 许家凤 , 高萌 , 王植 , 蒲金雨 , 成传晖 , 颜靖东
IPC: H01F41/06 , H01F41/082
Abstract: 本申请提供的一种高压设备谐波测量线圈绕线装置,该装置包括底座、支撑柱、升降盒、驱动组件和定位组件;其中,支撑柱设置在底座的顶部一侧,升降盒横向固定在支撑柱上,并通过支撑柱进行上下移动;定位组件和驱动组件分别设置在底座的内腔两侧并向上延伸至底座的顶部;定位组件与升降盒相对设置,以通过升降盒将线缆在竖直方向上进行固定,驱动组件在所述底座的顶部形成圆弧状,以固定并驱动绕线圈在水平方向上移动,升降盒的端部延伸至所述绕线圈的上方。因此本装置可以不同规格的绕线圈和线缆之间的绕线,适配性高,并且在绕线时,升降盒可以对绕线圈的外表面进行清洁,避免装置在绕线过程中将杂物一并缠绕至绕线圈中,进而导致排线错乱。
-
公开(公告)号:CN116242746A
公开(公告)日:2023-06-09
申请号:CN202310174615.5
申请日:2023-02-28
Applicant: 云南电网有限责任公司西双版纳供电局 , 南方电网科学研究院有限责任公司
Abstract: 本申请提供了变压器油道中金属微粒运动特性的模拟试验方法及装置,所述方法包括在不同变压器油流流速时,分别测定直管道和变径管道中的所述变压器油流的油流状态,所述变压器油流中有金属微粒;在不同变压器油流流速、不同金属微粒直径时,分别测试所述直管道和所述变径管道中所述金属微粒的运动迁移与沉积特性;根据所述油流状态、所述运动迁移与所述沉积特性结合得出变压器油道中金属微粒的运动特性。本申请通过上述方法及装置可以获取到变压器油流的状态,优化了变压器油流中金属微粒的运动特性模拟试验的可靠性和置信度,并且无需价格高昂的摄像机进行观察,极大的减小了整体设备的成本,并优化了试验效率。
-
-
-
-
-
-
-
-
-