一种基于图像复原的工业CT几何尺寸测量方法

    公开(公告)号:CN105222730B

    公开(公告)日:2017-10-24

    申请号:CN201510545714.5

    申请日:2015-08-31

    Abstract: 本发明公开了一种基于图像复原的工业CT几何尺寸测量方法,克服了现有技术中,一些工业CT几何尺寸测量方法仍需改进的问题。该发明具体步骤如下:(1)投影数据采集;(2)重建射束硬化校正后的CT图像;(3)计算二维PSF;(4)图像复原;(5)几何尺寸测量。与现有技术相比,本发明基于图像复原的工业CT几何尺寸测量方法具有以下优点:使用该发明方法复原后的CT图像,其模糊退化效应能得到有效抑制,并且能够获得更好的几何尺寸测量精度。

    基于卷积核的锥束CT散射伪影校正方法

    公开(公告)号:CN107202805A

    公开(公告)日:2017-09-26

    申请号:CN201710401166.8

    申请日:2017-05-31

    Abstract: 本发明涉及一种锥束CT散射伪影校正方法,特别是一种基于卷积核的锥束CT散射伪影校正方法,包括:对被测物进行CT扫描,得到投影数据;估算X射线的初始的光子数N0;利用初始光子数N0计算探测器上的光子数分布;计算X射线散射分布;从原始投影数据中扣除散射分布。本技术方案提出了一种新的卷积核,其中最关键的部分是散射核函数的求解,针对同材质均匀物体,分析X射线与物质相互作用的每个过程,并用数学公式加以描述,从而求得整个平面的散射分布。

    基于异构平台的CT图像三维重建加速方法及其装置

    公开(公告)号:CN107194864A

    公开(公告)日:2017-09-22

    申请号:CN201710270520.8

    申请日:2017-04-24

    CPC classification number: G06T1/20 G06T17/00 G06T2200/28

    Abstract: 本发明涉及一种基于异构平台的CT图像三维重建加速方法及其装置,异构平台包含主机及异构OpenCL计算设备,该加速方法包含:对FDK重建算法进行算粒分解,分析各个算粒的并行计算流程;通过异构平台中的主机及异构OpenCL计算设备对各个算粒进行加速优化处理。本发明深度挖掘CT重建算法的可并行性,采用GPU+FPGA的异构计算模式,使用不同类型指令集和体系架构的计算单元组成计算系统,最大程度上使算法与异构体系结构相匹配,充分利用不同加速部件的性能;同时设计适合重建算法高效运算的存储与通信方案,系统支持PCI‑E/Ethernet互联,支持多块处理板通过互联总线实现多处理器高效并行处理,实现同步或异步的协同处理机制,在尽量减少的损失精度的前提下提高重建速度。

    基于总变分TV最小化模型的精确重建采样条件估算方法

    公开(公告)号:CN104240209B

    公开(公告)日:2017-07-21

    申请号:CN201410333638.7

    申请日:2014-07-14

    Abstract: 本发明属于总变分最小化模型的CT图像精确重建领域,具体涉及一种基于TV最小化模型的精确重建采样条件估算方法,包含以下步骤:1将TV最小化模型转化为l1‑最小化模型;2提出精确重建必要条件1,并利用其估算采样角度数量下界;3提出精确重建必要条件2,并从下界采样角度数量开始逐个增加角度数量验证必要条件2;4提出精确重建充分条件,从同时满足两个必要条件的最少采样角度数量开始逐个增加角度数量验证精确重建充分条件,满足充分条件的最少角度数量即为采样条件的估算结果。本发明创新性提出将TV最小化模型划分为l1‑最小化模型,并通过必要条件1实现对采样角度数量下界的估算,最终通过验证必要条件2和充分条件得到更准确的估算结果。

    一种基于伪极坐标TV最小化直线轨迹CT图像重建方法

    公开(公告)号:CN104240272B

    公开(公告)日:2017-03-15

    申请号:CN201410338497.8

    申请日:2014-07-16

    Abstract: 本发明公开了一种基于伪极坐标TV最小化直线轨迹CT图像重建方法,克服了现有技术中,直线轨迹计算机断层成像(linear computed tomography,LCT)技术的有限角度图像重建的问题。该发明包含以下步骤——步骤1:建立TV最小化重建模型;步骤2:利用ADM最小化TV模型;步骤3:利用PPFFT实现图像空-频域变换;步骤4:实现并运行算法,获得重建图像。该LCT重建技术基于交替方向法设计了TV最小化模型的求解算法,具有稳定的收敛性;并且,由于采用了伪极快速傅里叶变换,该算法具有优异的重建精度和计算效率。基于伪极坐标TV最小化LCT图像重建技术,在LCT技术投入实用化中具有重要意义。

    一种基于动态电流的锥束CT环状伪影校正方法

    公开(公告)号:CN105787905A

    公开(公告)日:2016-07-20

    申请号:CN201610176008.2

    申请日:2016-03-24

    CPC classification number: G06T5/006 G06T2207/10081

    Abstract: 本发明公开了一种基于动态电流的锥束CT环状伪影校正方法,克服了现有技术中,重建图像中有环状伪影残留问题。该发明含有以下步骤:步骤1、利用动态电流下探元响应与管电流是否满足线性关系,将探元分为坏点和响应不一致探元两类;步骤2、判断不同管电流下单个探元响应的增量是否为零,对第一类坏点进行检测;步骤3、计算每一个探元的输出响应与管电流的相关系数,利用相关性分析的方法对第二类坏点进行检测;步骤4、计算探元响应和管电流间的线性回归方程,以单个管电流下所有探元响应的均值为基准,计算探元的一致性校正参数矩阵。本发明解决了现有坏点检测方法阈值确定困难的问题,本发明方法对环状伪影校正效果较好,通用性较强。

    基于TV最小化模型的精确重建采样条件估算方法

    公开(公告)号:CN104240209A

    公开(公告)日:2014-12-24

    申请号:CN201410333638.7

    申请日:2014-07-14

    Abstract: 本发明属于总变分最小化模型的CT图像精确重建领域,具体涉及一种基于TV最小化模型的精确重建采样条件估算方法,包含以下步骤:1将TV最小化模型转化为l1-最小化模型;2提出精确重建必要条件1,并利用其估算采样角度数量下界;3提出精确重建必要条件2,并从下界采样角度数量开始逐个增加角度数量验证必要条件2;4提出精确重建充分条件,从同时满足两个必要条件的最少采样角度数量开始逐个增加角度数量验证精确重建充分条件,满足充分条件的最少角度数量即为采样条件的估算结果。本发明创新性提出将TV最小化模型划分为l1-最小化模型,并通过必要条件1实现对采样角度数量下界的估算,最终通过验证必要条件2和充分条件得到更准确的估算结果。

    针对半覆盖螺旋锥束CT的单层重排滤波反投影重建方法

    公开(公告)号:CN103714578A

    公开(公告)日:2014-04-09

    申请号:CN201410035682.X

    申请日:2014-01-24

    Abstract: 本发明涉及一种针对半覆盖螺旋锥束CT的单层重排滤波反投影重建方法,首先将锥束投影重排成多排扇形束投影,每一排对应物体的一层,然后利用平行束投影的对称性质将每一排的扇形束投影重排成π范围内的平行束投影,此时平行束投影完全覆盖物体横截面,不存在数据截断,最后通过在重排前的锥束几何下计算反投影点,进行三维滤波反投影,避免了将第一次的重排误差引入重建图像。通过采用上述方法,能够实现半覆盖螺旋锥束几何下快速、高质量的三维重建,重建图像中没有明显截断伪影,重建质量不受数据截断位置的影响,能够更大程度地扩展螺旋锥束CT的成像视野。

    基于FPGA的CT图像重建硬件加速方法

    公开(公告)号:CN102567944B

    公开(公告)日:2013-10-30

    申请号:CN201210061660.1

    申请日:2012-03-09

    Abstract: 本发明涉及一种基于FPGA的CT图像重建硬件加速方法;通过如下步骤实现:步骤1、上位PC机将探测器采集的投影数据传入FPGA中的PCI-E通信模块,PCI-E通信模块接收的投影数据通过总线转换模块进入预处理模块中,预处理模块对接收的投影数据依次进行加权和滤波计算;步骤2、DDR2控制模块将经过加权和滤波预处理的投影数据写入DDR2SDRAM外部存储器中,系统控制模块针对每次重建的区域通过DDR2控制模块从DDR2SDRAM外部存储器中取出相应的数据,再送入反投影模块中进行反投影计算,反投影模块计算后的数据再传回上位PC机;本发明提供了一种计算速度快的基于FPGA的CT图像重建硬件加速方法。

    基于卷积核的锥束CT散射伪影校正方法

    公开(公告)号:CN107202805B

    公开(公告)日:2020-05-05

    申请号:CN201710401166.8

    申请日:2017-05-31

    Abstract: 本发明涉及一种锥束CT散射伪影校正方法,特别是一种基于卷积核的锥束CT散射伪影校正方法,包括:对被测物进行CT扫描,得到投影数据;估算X射线的初始的光子数N0;利用初始光子数N0计算探测器上的光子数分布;计算X射线散射分布;从原始投影数据中扣除散射分布。本技术方案提出了一种新的卷积核,其中最关键的部分是散射核函数的求解,针对同材质均匀物体,分析X射线与物质相互作用的每个过程,并用数学公式加以描述,从而求得整个平面的散射分布。

Patent Agency Ranking