一种基于半监督学习的判别回归流场预测方法

    公开(公告)号:CN118333131A

    公开(公告)日:2024-07-12

    申请号:CN202410350723.8

    申请日:2024-03-26

    Abstract: 本发明公开一种基于半监督学习的判别回归流场预测方法,包括以下步骤:获取半监督流场预测数据集;构建基于神经网络的深度流场预测模型;通过预热策略获得初步收敛的深度流场预测模型;利用神经网络记忆效应划分难样本、简单样本数据集;利用判别回归方法训练优化深度流场预测模型;利用深度流场预测模型执行预测,获取回归测试结果。本发明利用神经网络记忆效用实现判别回归预测方法,缓解流场预测半监督学习过拟合的问题;通过将伪标注和真实标注的样本混合,并利用GMM将样本划分为难易样本,有利于后续采取不同的学习策略来增强模型的判别性,进而提高性能;同时利用优化的深度流场预测模型计算样本的预测值,获取回归测试结果。

Patent Agency Ranking