-
公开(公告)号:CN117935994A
公开(公告)日:2024-04-26
申请号:CN202410318013.7
申请日:2024-03-20
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 中国核动力研究设计院
Abstract: 本发明涉及一种快速预测陶瓷核燃料辐照肿胀行为的方法,本方法借鉴金属材料中第二相粒子长大的Ostwald Ripening物理机制,结合相关物理理论,建立核燃料辐照过程中裂变气体气泡长大的数学物理模型及计算方法,然后基于核燃料的基本物性参数以及反应堆内的辐照环境参数,经过计算即可直接获得核燃料的辐照肿胀行为。本发明可用于针对陶瓷核燃料辐照肿胀行为的快速预测,无需额外开展核燃料样品的辐照实验,从而能够快速反映被研究核燃料的堆内辐照行为,因而可降低新型核燃料的研发成本,缩短研发周期。本发明的计算模型简洁,计算过程简单,对计算相关的辅助条件无苛刻要求,易于实现。
-
公开(公告)号:CN115881255A
公开(公告)日:2023-03-31
申请号:CN202310191856.0
申请日:2023-03-02
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 中国核动力研究设计院
Abstract: 本发明提出一种基于符号回归的控制棒芯体材料热物理性能的计算方法,包括:步骤1,获取控制棒芯体材料Ag‑In‑Cd合金的化学成分随热中子辐照剂量变化的线性关系式;步骤2,给定多个热中子辐照剂量预设值,根据线性关系式,分别制备与热中子辐照剂量预设值相对应化学成分的Ag‑In‑Cd模拟合金;步骤3,对Ag‑In‑Cd模拟合金进行均匀化热处理后,测量Ag‑In‑Cd模拟合金的热物理性能;步骤4,基于符号回归方法,获得Ag‑In‑Cd合金的热物理性能可解释模型。本发明方法可以定量计算控制棒芯体材料Ag‑In‑Cd合金的热物理性能,有助于准确评估核反应堆控制棒的堆内服役行为。
-
公开(公告)号:CN115221457B
公开(公告)日:2022-12-13
申请号:CN202211140526.0
申请日:2022-09-20
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 中国核动力研究设计院
Abstract: 本发明提出一种定量计算控制棒芯体的辐照肿胀量的方法,包括:计算初始未辐照时半径为R0、长度为L的控制棒芯体包含的原子总数N0;计算经辐照时间x后半径变为Rx、长度不变的控制棒芯体包含的原子总数Nx;根据Nx=N0得出Rx关于R0的表达式;计算辐照过程由化学成分变化引起的控制棒芯体的半径肿胀量;通过压缩蠕变试验估算控制棒芯体的热蠕变速率;计算辐照过程由高温蠕变引起的控制棒芯体的半径肿胀量;计算控制棒芯体的辐照肿胀量。本发明可以得出控制棒芯体的辐照肿胀随辐照时间的变化规律,计算结果与反应堆控制棒肿胀的实测结果符合性较好,验证了控制棒芯体辐照肿胀的计算方法的准确性。
-
公开(公告)号:CN118486388B
公开(公告)日:2024-09-27
申请号:CN202410940427.3
申请日:2024-07-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 中国核动力研究设计院
Abstract: 本发明建立基于芯体表面化学成分的核反应堆控制棒寿命预测方法,主要通过X射线荧光光谱分析法快速测量控制棒芯体表面化学成分,根据前期建立的控制棒芯体化学成分计算模型,可以计算控制棒芯体内部所有核素的含量,然后根据测量区域所有核素含量结果来计算控制棒的反应性价值,最后通过对比控制棒反应性价值和原始价值,进一步分析控制棒的堆内剩余寿命。本发明方法可以快速计算控制棒各个区域的反应性价值计算,较准确地预测控制棒的堆内剩余寿命,为核反应堆堆芯设计提供重要的基础数据和计算模型。
-
公开(公告)号:CN115679145B
公开(公告)日:2023-05-02
申请号:CN202211135233.3
申请日:2022-09-19
Applicant: 哈尔滨工业大学(深圳) , 中国核动力研究设计院
Abstract: 本发明公开了一种控制棒中子吸收体材料及其制备方法,中子吸收体材料组份包括Ag‑I n‑Cd合金基体以及弥散均匀分布于Ag‑I n‑Cd合金基体中的氧化钇颗粒。其制备方法包括:步骤S1、称取Ag、CdO、I n、Cd、Y原料;步骤S2、采用多阶段熔炼工艺将Ag、CdO、I n、Cd、Y原料熔炼得到含有氧化钇颗粒的Ag‑I n‑Cd合金,多阶段熔炼工艺包括至少两个阶段的熔炼;步骤S3、将Ag‑I n‑Cd合金进行轧制变形处理,轧制完成后进行退火处理。与现有技术比较,本发明所提出的含有弥散分布的氧化钇颗粒的Ag‑I n‑Cd合金与屈服强度和抗拉强度提升了50%以上,在材料强度方面提升显著,且并不会对延伸率造成明显的下降,十分适用于制作控制棒芯体,从而保障核反应堆长期安全运行。
-
公开(公告)号:CN118627403B
公开(公告)日:2024-11-26
申请号:CN202411106775.7
申请日:2024-08-13
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 中国核动力研究设计院
Abstract: 本发明建立一种掺杂二氧化铀陶瓷燃料力学性能的计算方法。主要通过模型计算不同二氧化锆掺杂量和不同燃耗深度条件下的掺杂二氧化铀陶瓷燃料的组成成分;根据计算的组成成分结果,制备一系列模拟不同二氧化锆掺杂量和不同燃耗深度的二氧化锆掺杂二氧化铀燃料;然后测量模拟不同二氧化锆掺杂量和不同燃耗深度掺杂二氧化铀材料的杨氏模量、硬度、断裂韧性、断裂强度力学性能数据;然后基于机器学习方法,建立一种不同二氧化锆掺杂量和不同燃耗深度条件下二氧化铀陶瓷燃料力学性能的计算模型和方法。本发明方法可以定量预测二氧化锆掺杂二氧化铀陶瓷燃料的力学性能,有助于准确评估掺杂二氧化铀陶瓷燃料的堆内反应行为。
-
公开(公告)号:CN117910282B
公开(公告)日:2024-05-28
申请号:CN202410315133.1
申请日:2024-03-19
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 中国核动力研究设计院
IPC: G06F30/20 , G06F17/10 , G16C60/00 , G01N25/20 , G06F119/08 , G06F119/14
Abstract: 本发明提出一种掺杂氧化物核燃料的热导率计算方法,包括:步骤1,建立掺杂材料对热传导过程中声子的散射系数计算模型;掺杂材料形成AxBy型固溶体材料;步骤2,分别建立掺杂材料中A类点阵缺陷和B类点阵缺陷所产生的声子散射系数计算模型;步骤3,建立计算替代原子导致的声子散射系数模型;步骤4,建立前述步骤中各声子散射系数模型中各参数的计算方法;步骤5,根据前述步骤中的结果计算掺杂材料的热导率。本发明基于掺杂前氧化物材料的热导率数据,经过计算即可直接获得掺杂后材料的热导率,无需额外单独制备热导率实验测量所需的标准尺寸样品,从而能够快速反映被研究材料产品的热物理性能状态,降低新材料的研发成本,缩短研发周期。
-
公开(公告)号:CN115679145A
公开(公告)日:2023-02-03
申请号:CN202211135233.3
申请日:2022-09-19
Applicant: 哈尔滨工业大学(深圳) , 中国核动力研究设计院
Abstract: 本发明公开了一种控制棒中子吸收体材料及其制备方法,中子吸收体材料组份包括Ag‑I n‑Cd合金基体以及弥散均匀分布于Ag‑I n‑Cd合金基体中的氧化钇颗粒。其制备方法包括:步骤S1、称取Ag、CdO、I n、Cd、Y原料;步骤S2、采用多阶段熔炼工艺将Ag、CdO、I n、Cd、Y原料熔炼得到含有氧化钇颗粒的Ag‑I n‑Cd合金,多阶段熔炼工艺包括至少两个阶段的熔炼;步骤S3、将Ag‑I n‑Cd合金进行轧制变形处理,轧制完成后进行退火处理。与现有技术比较,本发明所提出的含有弥散分布的氧化钇颗粒的Ag‑I n‑Cd合金与屈服强度和抗拉强度提升了50%以上,在材料强度方面提升显著,且并不会对延伸率造成明显的下降,十分适用于制作控制棒芯体,从而保障核反应堆长期安全运行。
-
公开(公告)号:CN104977336B
公开(公告)日:2017-10-24
申请号:CN201510376679.9
申请日:2015-07-01
Applicant: 中国核动力研究设计院
IPC: G01N27/26 , G01N27/416
Abstract: 本发明公开了一种量化测定氧化膜微观缺陷的方法,通过测定氧化膜的纯电子传导电流或电阻和离子向氧化膜中迁移形成的电流或阻抗,由离子迁移电流或阻抗与纯电子传导电流或电阻的差异及其数值,来量化表征氧化膜中的微观缺陷。本发明的有益效果是:本发明的方法能客观量化表征氧化膜微观缺陷的情况,如缺陷尺度、分布密度等,而不只是定性地了解,能反映出微观缺陷在宏观尺度(10mm)上的分布情况;本方法不需要制样,可在样品上直接测量,方便快捷,避免了制样过程造成的影响及人为因素的影响。
-
公开(公告)号:CN118627403A
公开(公告)日:2024-09-10
申请号:CN202411106775.7
申请日:2024-08-13
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 中国核动力研究设计院
Abstract: 本发明建立一种掺杂二氧化铀陶瓷燃料力学性能的计算方法。主要通过模型计算不同二氧化锆掺杂量和不同燃耗深度条件下的掺杂二氧化铀陶瓷燃料的组成成分;根据计算的组成成分结果,制备一系列模拟不同二氧化锆掺杂量和不同燃耗深度的二氧化锆掺杂二氧化铀燃料;然后测量模拟不同二氧化锆掺杂量和不同燃耗深度掺杂二氧化铀材料的杨氏模量、硬度、断裂韧性、断裂强度力学性能数据;然后基于机器学习方法,建立一种不同二氧化锆掺杂量和不同燃耗深度条件下二氧化铀陶瓷燃料力学性能的计算模型和方法。本发明方法可以定量预测二氧化锆掺杂二氧化铀陶瓷燃料的力学性能,有助于准确评估掺杂二氧化铀陶瓷燃料的堆内反应行为。
-
-
-
-
-
-
-
-
-