电介质微观界面荷电及陷阱特性的定量表征方法及装置

    公开(公告)号:CN109669057B

    公开(公告)日:2020-06-19

    申请号:CN201910132530.4

    申请日:2019-02-22

    申请人: 清华大学

    IPC分类号: G01Q30/04 G01Q30/20 G01Q60/00

    摘要: 本发明公开了一种电介质微观界面荷电及陷阱特性的定量表征方法及装置,其中,方法包括:制备栅极电压可控的固体绝缘样品,并获取固体绝缘样品的微观形貌图,以得到绝缘材料的局域态分布特性;对固体绝缘样品进行极化处理,以在去极化过程得到探针上的静电力梯度及电势分布信息,并获取固体绝缘样品的样品表面电势分布特性;根据样品表面电势分布特性反演得到微观界面表面电荷密度分布特性,并且根据微观界面表面电荷密度分布特性和局域态分布特性反推得到绝缘材料的迁移率和陷阱深度。该方法具有操作简便、精确度高、且可为纳米复合材料微区界面表征和定向精准调控提供新技术和新方法等优点。

    空间电荷测量用高压电极装置

    公开(公告)号:CN105738711B

    公开(公告)日:2019-01-15

    申请号:CN201610096689.1

    申请日:2016-02-22

    IPC分类号: G01R29/12

    摘要: 本发明公开了一种空间电荷测量用高压电极装置,所述高压电极装置包括:接地金属屏蔽罩、高压金属电极、高压直流绝缘套管、高压直流导电杆、高压脉冲绝缘套管、高压脉冲导电杆和内部电路,其中,接地金属屏蔽罩内设有隔板,隔板在接地金属屏蔽罩内限定出空气绝缘层和充有绝缘树脂的树脂绝缘层;高压直流导电杆设在高压直流绝缘套管内并穿过接地金属屏蔽罩的顶壁和隔板伸入到树脂绝缘层内与高压金属电极连接;高压脉冲导电杆设在高压脉冲绝缘套管内并穿过接地金属屏蔽罩伸入到空气绝缘层内;内部电路分别与高压脉冲导电杆和高压金属电极相连。根据本发明的空间电荷测量用高压电极装置,可以实现绝缘树脂的快捷更换,降低制作成本。

    空间电荷测量用高耐压电极装置

    公开(公告)号:CN105572434A

    公开(公告)日:2016-05-11

    申请号:CN201510980979.8

    申请日:2015-12-23

    IPC分类号: G01R1/18 G01R29/24

    CPC分类号: G01R1/18 G01R29/24

    摘要: 本发明提出一种空间电荷测量用高耐压电极装置包括:接地金属板、高压金属电极、半导电层、绝缘支撑块、绝缘套管、导电杆、绝缘树脂封装件、接地金属屏蔽罩和上、下屏障盘。绝缘支撑块和高压金属电极位于填充绝缘树脂封装件的接地金属屏蔽罩内,高压金属电极位于绝缘支撑块下方并与绝缘支撑块相连;半导电层设置在高压金属电极下方且与高压金属电极相连;接地金属板设置在接地金属屏蔽罩下方;上下屏障盘在接地金属屏蔽罩内,下屏障盘在上屏障盘下方,下屏障盘在接地金属板上表面;绝缘套管从接地金属屏蔽罩侧面穿入并与高压金属电极上端部侧面相连,绝缘套管内贯穿与高压金属电极上端部侧面相连的导电杆。本发明能够提高高压电极的沿面闪络电压。

    超高压大电流工况下直流电缆系统长期运行性能测试装置

    公开(公告)号:CN104375033A

    公开(公告)日:2015-02-25

    申请号:CN201410640250.1

    申请日:2014-11-13

    申请人: 清华大学

    IPC分类号: G01R31/00

    摘要: 本发明涉及一种超高压大电流工况下直流电缆系统长期运行性能测试装置,属于电力电缆绝缘诊断技术领域。本发明测试装置,包括电缆连接件,电缆连接件通过电缆本体与电缆的两个电缆终端相连,还包括直流大电流发生器和高压直流电压源,高压直流电压源与两个电缆终端中的任何一个相连,直流大电流发生器连接在两个电缆终端之间;电缆连接件和电缆本体由绝缘支撑件支撑。本测试装置可以有效地解决直流电缆系统高压和大电流测试,测试电缆长期运行中特性的变化,为直流电缆系统运行可靠性提供最为直接最关键的理论依据之一,为直流电缆大力推进提供坚实的基础。

    一种电阻率-温度特性优化的绝缘材料及其制备方法和应用

    公开(公告)号:CN116102848A

    公开(公告)日:2023-05-12

    申请号:CN202211333062.5

    申请日:2022-10-28

    摘要: 本发明公开了一种电阻率‑温度特性优化的绝缘材料及其制备方法和应用,所述方法为:(1)三(羟甲基)氨基甲烷粉末制成缓冲混合液;(2)具有电阻率正温度系数效应的钛酸钡基陶瓷粉末作为填料,干燥后与缓冲混合液混合,均匀分散,加入盐酸多巴胺,获得反应液;钛酸钡基陶瓷粉末的平均粒径为1nm‑500nm;(3)将反应液升温反应后,离心去除未反应的多巴胺溶液,干燥得到聚多巴胺包覆的填料;(4)聚多巴胺包覆的填料、双酚A型环氧树脂、固化剂和促进剂混合均匀后,抽真空后倒入模具中进行固化,得到环氧树脂复合材料,即为所述电阻率‑温度特性优化的绝缘材料。本发明的高温电阻率是纯环氧树脂材料的三倍以上,而且可掺杂于除环氧树脂以外的聚合物材料,提高聚合物材料的高温电阻率。

    聚乳酸复合材料及其制备方法

    公开(公告)号:CN112063136B

    公开(公告)日:2021-06-04

    申请号:CN202010808122.9

    申请日:2020-08-12

    IPC分类号: C08L67/04 C08L97/02 C08H8/00

    摘要: 本发明提出了制备聚乳酸复合材料的方法,所述方法包括:将洋麻纤维进行碱处理,以便得到碱处理的洋麻纤维;将所述碱处理的洋麻纤维与丙交酯单体进行第一交联处理,以便得到丙交酯接枝的洋麻纤维;将所述丙交酯接枝的洋麻纤维与环氧大豆油进行第二交联处理,以便得到环氧大豆油‑丙交酯接枝的洋麻纤维;以及将所述环氧大豆油‑丙交酯接枝的洋麻纤维与聚乳酸进行熔融共混处理,以便得到所述聚乳酸复合材料。采用本发明的方法所得到的聚乳酸复合材料具有优良的韧性和耐热性,具有良好的长期稳定性,机械性能良好,制备方法操作简便、快捷、污染小,适于规模化生产和应用。

    纳米级分辨率的快速固体电介质空间电荷测量系统及方法

    公开(公告)号:CN111505397A

    公开(公告)日:2020-08-07

    申请号:CN202010256657.X

    申请日:2020-04-02

    IPC分类号: G01R29/24

    摘要: 本发明公开了一种纳米级分辨率的快速固体电介质空间电荷测量系统及方法,其中,系统包括:太赫兹激发组件,用于激发太赫兹电磁波;快速扫描组件,用于改变探测光与激发光之间的配合状态;空间电荷信号激发组件,用于激发空间电荷信号;检测及控制环节组件,用于探测空间电荷信号,得到空间电荷测量结果。该系统基于快速扫描太赫兹技术,通过稳定快速的多臂旋转光学延迟器和太赫兹压力波传感器,从而实现空间分辨率可达数十纳米,单次测量时间在秒级的空间电荷测量,有效解决了目前传统空间电荷测量方法存在空间分辨率不足,背景噪声干扰大,信噪比较低,缺乏表征绝缘材料中微纳缺陷的荷电特性的问题。