一种真空光镊中的新型微球起支系统和方法

    公开(公告)号:CN114049980A

    公开(公告)日:2022-02-15

    申请号:CN202111098886.4

    申请日:2021-09-18

    Abstract: 本发明公开了一种真空光镊中的新型微球起支系统和方法。真空腔内固定有柱状的包裹物质,包裹物质内均匀间隔固定包裹有多个微球,真空腔的腔壁上开设有透光光学窗口,真空腔外的起支激光透过透光光学窗口照射到包裹物质的末端,使得包裹物质吸热分解,释放出一个或多个微球。本发明利用包裹物质易分解的性质,通过起支激光对包裹物质加热分解释放微球,减小了对微球尺寸的限制;由于起支激光从真空腔外发出,避免了额外的连接,提高了环境的封闭性,减少了外界环境输入的干扰,有利于精密测量;本发明能较为精确地控制每次起支释放的微球数量,减少多余微球对真空腔的污染,增加起支次数,提高光镊捕获单个微球的成功率。

    基于真空全息光镊的空间分辨压强测量系统及方法

    公开(公告)号:CN112880912B

    公开(公告)日:2022-01-18

    申请号:CN202110025166.9

    申请日:2021-01-08

    Abstract: 本发明公开了一种基于真空全息光镊的空间分辨压强测量系统及方法。包括真空腔、微纳粒子、光镊装置及反馈冷却装置、驱动电场装置、空间光调制器、偏振控制及检测装置和残余气体分析仪;激光从激光源出来经过第一分光镜入射到第一偏振分光镜发生透射,经空间光调制器反射调制、第一凸透镜透射汇聚后形成捕获光,捕获光照射微纳粒子处形成光阱捕获区域,捕获光经过微纳粒子后经第二凸透镜透射汇聚后入射到第二偏振分光镜发生反射和透射,第二偏振分光镜发生反射的光束入射到第一光电二极管;六个电极布置在光阱捕获区域周围。本发明利用全息光镊的操控灵活性,结合微纳粒子的局域探测手段,可以实现高真空下微纳尺度空间分辨率的压强分布测量。

    基于真空全息光镊的空间分辨压强测量系统及方法

    公开(公告)号:CN112880912A

    公开(公告)日:2021-06-01

    申请号:CN202110025166.9

    申请日:2021-01-08

    Abstract: 本发明公开了一种基于真空全息光镊的空间分辨压强测量系统及方法。包括真空腔、微纳粒子、光镊装置及反馈冷却装置、驱动电场装置、空间光调制器、偏振控制及检测装置和残余气体分析仪;激光从激光源出来经过第一分光镜入射到第一偏振分光镜发生透射,经空间光调制器反射调制、第一凸透镜透射汇聚后形成捕获光,捕获光照射微纳粒子处形成光阱捕获区域,捕获光经过微纳粒子后经第二凸透镜透射汇聚后入射到第二偏振分光镜发生反射和透射,第二偏振分光镜发生反射的光束入射到第一光电二极管;六个电极布置在光阱捕获区域周围。本发明利用全息光镊的操控灵活性,结合微纳粒子的局域探测手段,可以实现高真空下微纳尺度空间分辨率的压强分布测量。

    利用自聚焦光纤形成光阱并且冷却微粒的方法及装置

    公开(公告)号:CN110595151B

    公开(公告)日:2021-06-01

    申请号:CN201910889421.7

    申请日:2019-09-19

    Abstract: 本发明公开了一种利用自聚焦光纤形成光阱并且冷却微粒的方法及装置。自聚焦光纤出射捕获光,形成光阱;从垂直于光纤光轴的方向收集微粒的散射光,解析出微粒在三个正交方向上的运动信息;基于该运动信息冷却微粒的质心运动。该装置包括捕获光阱模块、运动探测模块和反馈冷却模块。本发明可提高微粒对捕获光的散射效率,增大光阱中稳定捕获点与光纤端面的间距;将高时间分辨率的光电探测器与光纤光阱结合,解决传统光纤光阱无法冷却微粒质心运动的难题;施加冷却方案后的光纤光阱,可在高真空环境下稳定悬浮微粒,最终提高光纤光阱测量装置的探测灵敏度和系统集成度。

    基于光镊和自旋缺陷的多物理参数传感的装置和方法

    公开(公告)号:CN112255578A

    公开(公告)日:2021-01-22

    申请号:CN202011424322.0

    申请日:2020-12-08

    Abstract: 本发明涉及一种基于光镊和自旋缺陷的多物理参数传感的装置和方法,该装置包括第一激光器、第二激光器、第一光调制器、第二光调制器、分束器、合束器、物镜、透镜、第一光电探测器、第二光电探测器、微波源、微波调制器、微波天线、双色片、荧光探测器、控制显示系统。通过在光阱中悬浮含有自旋缺陷的微纳米级尺寸的金刚石颗粒,根据金刚石颗粒的运动,得到各种物理参数。本发明的装置和方法可以实现同一空间位置的多物理参数传感,避免了信息的梯度差;且本发明的装置将不同探测对象所需的系统集成到一起,实现单个设备的多物理参数探测,节省载荷空间、节约成本。

    利用光阱捕获微粒进行微生物快速检测的方法及装置

    公开(公告)号:CN112014260A

    公开(公告)日:2020-12-01

    申请号:CN202010791766.1

    申请日:2020-08-08

    Abstract: 本发明公开了一种利用光阱捕获微粒进行微生物快速检测的方法及装置。该装置通过利用光阱技术形成稳定的捕获光场实现对微粒的稳定捕获,通过对微粒运动信息的处理,实现对微粒质量的高精度测量,微粒表面根据检测需要设有微生物特异性的结合位点或者配体。本发明还提供了一种利用该装置进行微生物检测的方法,通过测量导入待测气体前后微粒的质量变化,即可对微生物进行快速检测,检测步骤简便、快速、灵敏度高。

    利用纳米微粒测量激光光场相对强度分布的方法和装置

    公开(公告)号:CN111623871A

    公开(公告)日:2020-09-04

    申请号:CN202010667308.7

    申请日:2020-07-13

    Abstract: 本发明公开了一种利用纳米微粒测量激光光场相对强度分布的方法和装置。通过在载玻片上放置纳米微粒,并将载玻片放置于待测光场中,当光场入射到纳米微粒时会发生瑞利散射,其散射光光强与微粒所在位置处的待测光场的光强成正比,利用光电探测器收集纳米微粒的散射光信号,同时通过移动载玻片来实现纳米微粒的移动,记录在不同位置处纳米微粒的散射光光强,即可实现对待测光场的相对光强分布扫描。本发明提供一种新的光场相对强度测量手段,并提供更高的测量精度,易于应用实施。

    一种测量光场分布的方法及装置

    公开(公告)号:CN111551250A

    公开(公告)日:2020-08-18

    申请号:CN202010667605.1

    申请日:2020-07-13

    Abstract: 本发明公开了一种测量光场分布的方法及装置。利用光阱稳定悬浮微粒,移动光阱使微粒靠近待测光场,利用光电探测器收集微粒在待测光场的三维空间中不同位置的散射光信号,根据散射光强与该位置的光强成正比解算出待测光场的光场分布。测量光场分布的装置,包括激光器、捕获光路、微粒、光电探测器、控制系统和上位机;激光器出射激光,经过捕获光路,出射高度聚焦的捕获光B,形成光阱,捕获微粒;微粒在待测光场A中的某个位置,散射光C被光电探测器收集;光电探测器将散射光信号上传到上位机;上位机根据不同位置处获取的散射光信号解算出待测光场A的光场分布。本发明可精确获得光场的三维光强分布,将光场测量的空间分辨率提升到纳米量级。

    一种双光束光阱光束辅助对准装置和方法

    公开(公告)号:CN111061064A

    公开(公告)日:2020-04-24

    申请号:CN201911405562.3

    申请日:2019-12-30

    Abstract: 本发明公开了一种双光束光阱光束辅助对准装置和方法。置于光阱中心处,一对三角棱镜均为直角三角形,以各自的一侧直角边所在平面完整紧贴连接、以各自的另一侧直角边所在平面相互平行布置而形成平行四边形棱镜,平面反射镜水平且反射面朝上,另一侧直角边所在平面的其中一个固定紧贴布置于平面反射镜的一半侧,一对三角棱镜的斜边所在平面镀有半透半反射膜;一对四象限位置探测器水平布置于同一平面,位于平面反射镜和一对三角棱镜上方。本发明可简单有效辅助光阱光束的光学调整,提高光阱性能,为以光阱为核心部件的光力悬浮系统提供一个高效快速、方便一致性的调整方案。

    基于回音壁谐振模式测量光阱捕获微粒半径的方法及装置

    公开(公告)号:CN114624153B

    公开(公告)日:2022-10-21

    申请号:CN202210525423.X

    申请日:2022-05-16

    Abstract: 本发明公开了一种基于回音壁谐振模式测量光阱捕获微粒半径的方法及装置。所述的方法,1)利用光阱捕获并悬浮真空腔中的微粒;2)将锥形光纤的束腰部分靠近该微粒,利用倏逝场将入射光耦合进入捕获的微粒,调整入射光的波长,使微粒达到回音壁谐振模式;3)根据光学回音壁谐振模式的形成条件公式,计算得到谐振腔的半径r;4)根据透射光谱的模式劈裂,计算出微粒的偏心率Ɛ。所述的装置真空光镊装置的基础上,增加了可调谐激光器和锥形光纤,可以在不改变原有悬浮微粒的状态下形成回音壁谐振模式,实现了真空光阱悬浮颗粒半径的原位检测。本发明原位、无损、非接触式、高精度,简化了步骤,结果准确可靠。

Patent Agency Ranking