一种基于毛细玻璃管装载的微粒转移悬浮方法及装置

    公开(公告)号:CN115938634A

    公开(公告)日:2023-04-07

    申请号:CN202310237271.8

    申请日:2023-03-13

    IPC分类号: G21K1/00

    摘要: 本发明公开了一种基于毛细玻璃管装载的微粒转移悬浮方法及装置。本发明在毛细管前端装载上微粒,利用线性位移台将毛细管固定并移动至势阱附近,利用细线将微粒推出毛细管,微粒被势阱力捕获并实现悬浮。本发明解决了直径在数十微米至数百微米范围的微粒无法通过喷雾法和振动脱附下落法实现转移悬浮的问题,转移悬浮成功率大于90%,避免了镊子夹持转移方法对微粒的损伤和势阱附近物体与镊子尖端产生空间干涉的问题。将装载微粒的毛细管前端置于光学显微镜下,可精确观测和筛选待悬浮的单个微粒的内部均匀性、面型和尺寸等参数。

    引力加速度调制装置及方法

    公开(公告)号:CN115079737B

    公开(公告)日:2022-12-02

    申请号:CN202210860338.9

    申请日:2022-07-22

    IPC分类号: G05D13/62 H02K7/02

    摘要: 本发明公开了一种引力加速度调制装置及方法。引力加速度调制装置,包括微粒、调制模块、真空模块、捕获模块、探测模块;调制模块包括顺次相连的飞轮、旋转轴、联轴器、减速器、电机、三轴精密位移台、电机支座;其中电机通过减速器和联轴器带动飞轮周期性的相对位置运动,实现对力或加速度调制;真空模块用于提供超高真空环境;捕获模块利用磁场、光场或电场捕获微粒;探测模块用于探测微粒的运动信息;调制模块、捕获模块整体安装在真空模块内。本发明利用万有引力定力定律,免去质量误差带来的影响,设计了飞轮结构,可实现微粒信号的二倍频调制,避免了电机本身固有频率噪声的影响,实现对引力加速度标定,可应用在量子传感、精密测量等领域。

    一种基于悬浮微粒的信号通讯方法和装置

    公开(公告)号:CN114826851B

    公开(公告)日:2022-10-04

    申请号:CN202210732153.X

    申请日:2022-06-27

    IPC分类号: H04L27/00 H04B15/00

    摘要: 本发明公开了一种基于悬浮微粒的信号通讯方法和装置。方法步骤如下:1)制备微粒悬浮状态;2)调控与测量悬浮微粒带电量;3)校准悬浮微粒电磁响应特性;4)施加电磁通讯信号;5)获取与解调电磁通讯信号。装置,包括悬浮捕获模块、电荷测控模块、电磁响应校准模块和通讯信号探测与解调模块;电磁响应校准模块用于提前获取悬浮微粒的必要先验信息,测量悬浮微粒的基底噪声和频域的电磁响应传递函数;通讯信号探测与解调模块用于恢复外部的电磁响应信号,并解调出信号的码元信息。针对现有的无线通讯系统所用的天线体积庞大、接收灵敏度偏低的问题,本发明至少具备两个方面的优势:一是悬浮微粒的体积更小,二是系统具有更高的接收灵敏度。

    可伸缩式吸气剂泵抽真空装置及应用方法

    公开(公告)号:CN114753991B

    公开(公告)日:2022-10-04

    申请号:CN202210679130.7

    申请日:2022-06-16

    摘要: 本发明公开了一种可伸缩式吸气剂泵抽真空装置及应用方法。装置包括机械泵、分子泵、实验平台、离子泵、伸缩式吸气剂泵结构、真空规、真空腔、金属角阀、小抽气管、分子泵卡箍、大抽气管、大抽气管卡箍、硬管支撑、电动阀、硬管、硬弯管、离子泵支撑、离子泵角阀、支撑柱、离子泵直通管。其中伸缩式吸气剂泵结构由短直通管、螺钉、插板阀、伸缩管、直线导轨、调节架、手轮、手摇杆、右支架、定位块、左支架、吸气剂泵、左支架支撑、右支架支撑、调节丝杠等组成。利用伸缩式吸气剂泵结构,带动吸气泵剂整体移动,吸气剂泵远离或靠近真空腔,可适用经常破空的实验环境系统,可应用在量子传感、生物、化工、环境监测等需要抽超高真空领域。

    基于纳米微粒光学成像的光阱电场变化量标定装置及方法

    公开(公告)号:CN112858304B

    公开(公告)日:2021-08-03

    申请号:CN202110445513.3

    申请日:2021-04-25

    IPC分类号: G01N21/84 G02B27/58 B81B1/00

    摘要: 本发明公开一种基于纳米微粒光学成像的光阱电场变化量标定装置及方法,通过直观光学成像的方法,测量恒定电场作用下的线纳米粒子平衡位置位移量实现标定,避免错误信号的引入,增加差分标定的可信度。本发明的具体标定方法与装置不仅适用于电场量的标定,对于其他如磁力等的标定同样适用。通过本发明力学量的精确标定,可促进真空光阱传感技术的发展应用。同时本发明的标定装置可以帮助使用者进行感知微粒投送过程以及微粒动力学行为如粒子吸附、掉落等的监测。

    一种真空光阱起支方法及装置与应用

    公开(公告)号:CN112466506A

    公开(公告)日:2021-03-09

    申请号:CN202110128268.3

    申请日:2021-01-29

    IPC分类号: G21K1/00 G02B27/00 G01C21/16

    摘要: 本发明公开了一种真空光阱起支方法及装置与应用。利用脉冲激光使微粒脱离基板;目标微粒进入离子阱中先被捕获,并在离子阱中不断减速至光阱可捕获的速度并且位移至光阱的有效捕获范围内时,打开光阱,使目标微粒同时被光阱和离子阱捕获,之后关闭并挪走离子阱,或利用离子阱进一步冷却目标微粒的质心运动。光阱起支装置,包括基板、脉冲激光器、离子阱、光阱、控制装置,基板表面放置目标微粒,脉冲激光器位于基板的下方,离子阱位于基板的上方,离子阱与光阱的稳定捕获点重合,控制装置通过时序控制脉冲激光器、离子阱和光阱的开启时间。本发明解决了常压起支带来的问题,也可将光阱技术拓展应用到外太空等真空环境。

    一种利用光阱测量微粒光吸收特性的方法及装置

    公开(公告)号:CN111398100A

    公开(公告)日:2020-07-10

    申请号:CN201910965695.X

    申请日:2019-10-12

    IPC分类号: G01N15/00 G01N21/31

    摘要: 本发明公开了一种利用光阱测量微粒光吸收特性的方法及装置。利用光阱稳定悬浮待测微粒,然后对捕获势阱中的待测微粒施加一束激发光束和一束探测光束,利用探测器收集经过微粒之后的探测光束;待测微粒吸收激发光束被瞬间加热,产生热透镜效应,对探测光束的折射发生变化,从而改变探测器上接收到的热光信号;根据热光信号的变化可解算出待测微粒对激发光束的光吸收特性;改变激发光束的波长进行测量,可得到在该波段内的光吸收特性谱。装置包括捕获光阱模块、激发探测模块和控制模块。本发明采用光学非接触式的方法测量微量样品的光吸收特性,测量精度高,响应速度快;可在光阱中原位测量微粒的光吸收特性,实时筛选出光吸收特性良好的微粒样品。

    一种基于电场校准的悬浮光阱纳米粒子质量测量方法

    公开(公告)号:CN113804606B

    公开(公告)日:2024-07-12

    申请号:CN202110990298.5

    申请日:2021-08-26

    IPC分类号: G01N15/1031

    摘要: 本发明公开了一种基于电场校准的悬浮光阱纳米粒子质量测量方法。在高真空度下,利用幅值锁定方法得到光阱的非线性校准系数,进而通过位移信号测量获得光阱中球形纳米粒子的质量,校准由电场驱动测量方法测得的质量,得到有效的驱动交流电场后利用驱动电场测量方法计算抽真空过程中的球形纳米粒子质量。本发明解决了常见质量测量方法存在的缺陷,通过驱动电场的校准实现精确测量光阱中悬浮微粒的质量,一方面可以提高了悬浮光力学力学指标测量精度和过程中质量测量,并且提供了一种微纳尺度电场量表征的手段。

    一种微球在光学驻波中自由下落的绝对重力仪装置及方法

    公开(公告)号:CN117331135A

    公开(公告)日:2024-01-02

    申请号:CN202311201905.0

    申请日:2023-09-18

    IPC分类号: G01V7/04 G01V7/00

    摘要: 本发明公开了一种基于透明介质微球在光学驻波中自由下落的绝对重力仪装置及方法。本发明利用激光搭建沿着竖直方向的驻波光路,其中驻波一端光束入射至光强探测器。再将透明介质微球在势阱中悬浮,关闭势阱使微球在驻波中自由下落。微球反复通过波节位置时,光强探测器接收周期性变化信号,从而实时测量微球位移,计算出下落的加速度值,然后开启势阱将微球拉升回原释放点重复下落。相比于传统重力仪中的棱镜落体,本发明中的微球落体拉回释放点耗时短,测量带宽高。并且在减速过程中没有碰撞损耗,测量寿命长。微球可批量制造,体积小而加工难度相对低。总之,本发明提供了一种高测量带宽、小型化和低成本的绝对重力仪方法和装置。

    一种基于静电调控的悬浮光力重力测量装置及方法

    公开(公告)号:CN116027444A

    公开(公告)日:2023-04-28

    申请号:CN202310304234.4

    申请日:2023-03-27

    IPC分类号: G01V7/00

    摘要: 本发明公开了一种基于静电调控的悬浮光力重力测量装置及方法。一种基于静电调控的悬浮光力重力测量方法,通过施加静电场控制处于势阱中的带电的微纳颗粒振动的平衡位置,进而使微纳颗粒的振动中心频率随静电场的变化达到最大值,判定微纳颗粒受到的静电力和自身重力达到平衡,然后根据微纳颗粒的质量、电荷量,和施加的静电场,得出重力加速度。一种基于静电调控的悬浮光力重力测量装置,包括微纳颗粒、电极、电荷源和支撑结构;所述的支撑结构用于支撑电极。本发明极大地降低了重力仪装置的复杂度,不易受空气分子影响,并不需要时序控制模块,还可拓展应用于其他静力的测量。