一种基于卷积神经网络的电量预测方法

    公开(公告)号:CN110212520A

    公开(公告)日:2019-09-06

    申请号:CN201910441311.4

    申请日:2019-05-24

    IPC分类号: H02J3/00

    摘要: 本发明涉及一种基于卷积神经网络的电量预测方法,其技术特点在于:包括以下步骤:步骤1、构建电量预测卷积神经网络;步骤2、将输入层电量、气温、节假日数据进行预处理,通过归一化处理将上述三类数据转化为无量纲相对量后,将海量数据输入步骤1的电量预测卷积神经网络;步骤3、初始化多通道卷积神经网络权值和偏置;步骤4、将输入数据通过卷积神经网络逐层计算;步骤5、基于误差梯度的反向传播算法调整每层网络的权值和偏置;步骤6、达到设定迭代次数后停止训练,输入测试样本集得到预测结果。本发明提高了电量预测过程中海量数据处理效率、综合考虑温度等关联信息,并克服了预测过程过分依赖个人经验等问题,进而能够降低人员要求。