-
公开(公告)号:CN106769587A
公开(公告)日:2017-05-31
申请号:CN201710113746.7
申请日:2017-02-28
Applicant: 上海核工程研究设计院
IPC: G01N3/56
CPC classification number: G01N3/56 , G01N2203/0035 , G01N2203/0232
Abstract: 本发明提供一种多试样磨损试验装置,其包括高压釜、试样座、静试样座、加载弹簧、柔性铰链、试样座安装架和驱动杆;所述试样座包括静试样座和动试样座;所述静试样座、静试样座和加载弹簧设置在所述高压釜内,采用与所述动试样座相连的所述驱动杆穿出所述高压釜的盖,以为所述动试样座提供驱动力;所述试样座通过试样座安装架安装在所述高压釜内。本发明提供的多试样磨损试验装置,可实现在高温高压溶液环境下的磨损试验,通过一次安装多个试样方式提高试验效率,通过采用弹簧为静试样加载简化了高压釜内试样加载控制,通过在高压釜外部驱动杆上测量位移和载荷的方式实现了对摩擦运动的位移控制,以及位移和摩擦力的测量。
-
公开(公告)号:CN106290011A
公开(公告)日:2017-01-04
申请号:CN201610554439.8
申请日:2016-07-14
Applicant: 上海核工程研究设计院 , 上海大学
IPC: G01N3/30
Abstract: 本发明提供一种用于测试隔磁片受冲击过程力学响应的方法,其包括如下步骤:针对控制棒驱动机构整体进行数值建模分析;针对所设计的隔磁片动态冲击试验装置进行数值建模分析;将上述两种数值建模分析结果进行对比;基于动态冲击试验装置开展隔磁片冲击试验。本发明提供的用于测试隔磁片受冲击过程力学响应的方法,解决了控制棒驱动机构实际工作状态下隔磁片冲击力学响应无法直接测量的问题,通过数值建模分析验证后的模拟试验方法,针对隔磁片在衔铁冲击作用下的力学响应进行直接测试。
-
公开(公告)号:CN105510118A
公开(公告)日:2016-04-20
申请号:CN201511029519.3
申请日:2015-12-31
Applicant: 浙江工业大学 , 上海核工程研究设计院
IPC: G01N3/02
CPC classification number: G01N3/02
Abstract: 一种对称式线接触微动疲劳试验微动载荷加载装置,包括固定底座,所述固定底座上安装立柱,所述加载装置还包括静定梁、螺旋加载机构、载荷传感器和加载工位板,两根静定梁平行设置且均位于立柱上,所述加载工位板的两端分别可滑动地与一根静定梁连接,所述两个加载工位板之间为试验工位,在所述加载工位板远离试验工位侧的同轴线上安装所述载荷传感器,所述载荷传感器与所述螺旋加载机构的动作端配合。本发明提供了一种稳定性很好、刚度较好、可靠性强的对称式线接触微动疲劳试验微动载荷加载装置。
-
公开(公告)号:CN103604713B
公开(公告)日:2016-01-13
申请号:CN201310594092.6
申请日:2013-11-21
Applicant: 西南交通大学 , 上海核工程研究设计院
IPC: G01N3/56
Abstract: 一种蒸汽发生器传热管的多向微动磨损装置及试验方法,其装置由机架、驱动装置、调平升降系统和数据采集控制系统组成,其中:试件驱动装置的构成是:压电陶瓷作动器上端与中梁固定连接,下端依次通过柔性接头、连接杆、测力传感器与夹持块状试件的上夹具相连,上夹具与中梁之间安装有位移传感器;传热管调平升降系统的构成是:角位移台固定在底座上,角位移台上固定有升降台,升降台上安装试件支撑板,支撑板上靠拢放置两等径的圆柱形试件,圆柱形试件的外侧紧靠夹紧板,夹紧板上螺纹连接下压板,下压板与圆柱形试件紧配合;两圆柱形试件中放置传热管。该装置结构简单,易操作,能进行传热管的多向微动摩擦磨损试验,实验数据准确、可靠,精度高。
-
公开(公告)号:CN104891324A
公开(公告)日:2015-09-09
申请号:CN201510247008.2
申请日:2015-05-14
Applicant: 上海核工程研究设计院
IPC: B66C1/12
CPC classification number: B66C1/12
Abstract: 本发明公开了一种新型核电厂钢安全壳吊具,包括分配器、钢丝绳吊索和角度转接头装置;所述分配器的上部设置有十字交叉结构的主吊板;分配器下部设置有圆周方向均布的分支吊板分配器整体结构的中心对称,受力合理,在被吊物品重量相当的情况下采用中心对称结构可大幅降低分配器的重量;角度转接头装置含角度转接头与双级平衡梁,角度转接头将分配器主吊板上的0°、90°、180°、270°方向的销轴孔轴线均调整至相互平行的同一方向,以便于其与双级平衡梁相连。
-
公开(公告)号:CN103969116A
公开(公告)日:2014-08-06
申请号:CN201410169800.6
申请日:2014-04-24
Applicant: 浙江工业大学 , 上海核工程研究设计院
IPC: G01N3/04
Abstract: 一种空心管材微动疲劳试验的夹具结构,内连接阶梯轴的中部设有外凸台肩,外凸台肩左侧的内连接阶梯轴上套装外螺纹套管,外螺纹套管的外螺纹比外凸台肩高,内连接阶梯轴与外螺纹套管之间的空隙为工位,外凸台肩右侧的内连接阶梯轴与试验机的夹持端连接,内螺纹式连接套管的内腔设有轴阶,轴阶左侧内径比轴阶右侧内径大;轴阶左侧的内螺纹式连接套管的内腔开有内螺纹,内螺纹式连接套管套装在内连接阶梯轴的中部,内螺纹与外螺纹套管的外螺纹连接,外凸台肩位于轴阶上,轴阶右侧的内螺纹式连接套管的内腔套装在内连接阶梯轴的右侧上。本发明在夹持部位有效消除应力集中现象、避免产生接触压、提升材料试验性能可靠性。
-
公开(公告)号:CN106290011B
公开(公告)日:2019-11-19
申请号:CN201610554439.8
申请日:2016-07-14
Applicant: 上海核工程研究设计院 , 上海大学
IPC: G01N3/30
Abstract: 本发明提供一种用于测试隔磁片受冲击过程力学响应的方法,其包括如下步骤:针对控制棒驱动机构整体进行数值建模分析;针对所设计的隔磁片动态冲击试验装置进行数值建模分析;将上述两种数值建模分析结果进行对比;基于动态冲击试验装置开展隔磁片冲击试验。本发明提供的用于测试隔磁片受冲击过程力学响应的方法,解决了控制棒驱动机构实际工作状态下隔磁片冲击力学响应无法直接测量的问题,通过数值建模分析验证后的模拟试验方法,针对隔磁片在衔铁冲击作用下的力学响应进行直接测试。
-
公开(公告)号:CN105510118B
公开(公告)日:2018-07-06
申请号:CN201511029519.3
申请日:2015-12-31
Applicant: 浙江工业大学 , 上海核工程研究设计院有限公司
IPC: G01N3/02
Abstract: 一种对称式线接触微动疲劳试验微动载荷加载装置,包括固定底座,所述固定底座上安装立柱,所述加载装置还包括静定梁、螺旋加载机构、载荷传感器和加载工位板,两根静定梁平行设置且均位于立柱上,所述加载工位板的两端分别可滑动地与一根静定梁连接,所述两个加载工位板之间为试验工位,在所述加载工位板远离试验工位侧的同轴线上安装所述载荷传感器,所述载荷传感器与所述螺旋加载机构的动作端配合。本发明提供了一种稳定性很好、刚度较好、可靠性强的对称式线接触微动疲劳试验微动载荷加载装置。
-
公开(公告)号:CN106990004A
公开(公告)日:2017-07-28
申请号:CN201710282107.3
申请日:2017-04-26
Applicant: 中国科学院金属研究所 , 上海核工程研究设计院
IPC: G01N3/36
CPC classification number: G01N3/36 , G01N2203/0005 , G01N2203/0048
Abstract: 本发明属于材料性能测试试验技术领域,准确地说,涉及到一种带高温高压循环水的微动疲劳试验装置及其应用。该装置主要由高温高压循环水系统、高压釜、疲劳机、法向正压力施加系统、控制系统五部分组成。高温高压循环水系统为高压釜内提供试验所需的水化学精确可控的高温高压循环水环境,疲劳机对高压釜内的疲劳试样施加交变载荷,法向正压力施加系统对高压釜内疲劳试样标距段表面施加可控的正压力,控制系统控制高温高压循环水系统和疲劳机。在疲劳试验过程中,疲劳试样标距段反复变形,磨损压头保持静止,磨损压头与疲劳试样标距段接触区域反复摩擦,实现高温高压循环水环境中的原位微动疲劳试验。
-
公开(公告)号:CN106356107A
公开(公告)日:2017-01-25
申请号:CN201610996164.3
申请日:2016-11-11
Applicant: 上海核工程研究设计院
Inventor: 景益 , 贺小明 , 邵长磊 , 李岗 , 朱自强 , 黄然 , 奚梅英 , 刘建文 , 李雷 , 石悠 , 王谊清 , 王永东 , 宁冬 , 张效宁 , 张俊宝 , 谷雨 , 刘晓强 , 孟凡江 , 徐雪莲 , 李晨 , 钱浩 , 谢永诚
IPC: G21C19/07
CPC classification number: G21C19/07
Abstract: 本发明提供了一种增材制造的乏燃料贮存格架,从底部到顶部依次包括底板、贮存腔、中子吸收板及包壳、围板,所述格架采用增材制造方法从底部往顶部逐层打印一体成型。相对于传统的焊接式或装配式乏燃料贮存格架,增材制造的乏燃料贮存格架具有结构形式简单、结构强度高、制造工艺简单、制造周期短等特点,可避免传统乏贮存格架焊接量大、焊接变形控制困难、制造工装复杂等难题,同时可以缩小贮存腔之间的间距,实现密集化贮存,提高乏燃料水池的贮存容量。
-
-
-
-
-
-
-
-
-