一种基于网格降雨信息的CNN-LSTM卷积循环神经网络水文预报校正方法

    公开(公告)号:CN115511206A

    公开(公告)日:2022-12-23

    申请号:CN202211268814.4

    申请日:2022-10-17

    摘要: 本发明属于流域水文预报误差校正技术领域,且公开了一种基于网格降雨信息的CNN‑LSTM卷积循环神经网络水文预报校正方法,水文预报校正方法总共分为三个主要步骤,分别为收集水文要素、构建CNN‑LSTM卷积循环神经网络校正模型和模型验证与误差校正。本发明将收集的数据作为模型的输入特征,利用历史观测数据、预报数据训练和确定模型结构,挖掘预报影响因素、时空特征与预报误差之间的相关关系,利用实际预报降雨径流资料对模型进行验证,实现水文预报误差智能校正,该模型具有较高的精度,尤其在汛期,校正后的预报流量精度有明显的提高,有效地应对误差规律的非线性特点,为人工智能在流域水文预报领域的“分布式”应用奠定基础。