制备三元前驱体的方法及反应装置

    公开(公告)号:CN113912140A

    公开(公告)日:2022-01-11

    申请号:CN202111284845.4

    申请日:2021-11-01

    Abstract: 本发明涉及锂离子电池技术领域,提供一种制备三元前驱体的方法及反应装置。该方法包括:配置摩尔浓度为1mol/L‑4mol/L的金属盐溶液;配置摩尔浓度为9mol/L‑12mol/L的沉淀剂;配置摩尔浓度为6mol/L‑9mol/L的络合剂;间歇性进行共沉淀反应,直至粒度D50达到要求。本发明提供的制备三元前驱体的方法及反应装置的有益效果是:采用间歇法,制备得到粒度分布窄的三元前驱体,解决现有的三元前驱体粒度分布宽的技术问题,窄粒度分布的三元前驱体在高温混锂烧结段能有效减少颗粒的团聚,有效地利用颗粒间的空间来提升材料的能量密度,得到能量密度高的动力电池正极材料。

    一种掺杂金属元素的三元前驱体及其制备方法和应用

    公开(公告)号:CN113582249A

    公开(公告)日:2021-11-02

    申请号:CN202110841834.5

    申请日:2021-07-26

    Abstract: 本发明涉及锂离子电池正极材料技术领域,具体而言,涉及一种掺杂金属元素的三元前驱体及其制备方法和应用。本发明掺杂金属元素的三元前驱体的制备方法,包括以下步骤:向反应底液中加入镍钴锰混合盐溶液、络合剂溶液、沉淀剂溶液和掺杂金属盐溶液进行共沉淀反应;调整沉淀剂溶液的进料位点、镍钴锰混合盐溶液的进料位点和金属盐溶液的进料位点的位置关系;所述镍钴锰混合盐溶液中,镍离子、钴离子和锰离子的浓度之和为0.5~2.5mol/L;所述金属盐溶液中的金属盐质量浓度为0.1~5.0g/L;所述镍钴锰混合盐溶液的流量和所述金属盐溶液的流量之比为(0.5~4):1。该方法简单易行,得到的三元前驱体具有优异的稳定性和均一性。

    制备三元前驱体的方法及反应装置

    公开(公告)号:CN113912140B

    公开(公告)日:2022-11-01

    申请号:CN202111284845.4

    申请日:2021-11-01

    Abstract: 本发明涉及锂离子电池技术领域,提供一种制备三元前驱体的方法及反应装置。该方法包括:配置摩尔浓度为1mol/L‑4mol/L的金属盐溶液;配置摩尔浓度为9mol/L‑12mol/L的沉淀剂;配置摩尔浓度为6mol/L‑9mol/L的络合剂;间歇性进行共沉淀反应,直至粒度D50达到要求。本发明提供的制备三元前驱体的方法及反应装置的有益效果是:采用间歇法,制备得到粒度分布窄的三元前驱体,解决现有的三元前驱体粒度分布宽的技术问题,窄粒度分布的三元前驱体在高温混锂烧结段能有效减少颗粒的团聚,有效地利用颗粒间的空间来提升材料的能量密度,得到能量密度高的动力电池正极材料。

Patent Agency Ranking