剑麻纤维基氮、硫共掺杂类石墨烯碳材料及制备方法

    公开(公告)号:CN106882799B

    公开(公告)日:2020-07-31

    申请号:CN201710125304.4

    申请日:2017-03-04

    Abstract: 本发明公开了一种剑麻纤维基氮、硫共掺杂类石墨烯碳材料及其制备方法。该材料的宏观特征为黑色的固体粉末,微观结构特征为碳纳米片,片的厚度为2~6纳米,掺杂有氮、硫元素。将剑麻纤维用水洗并烘干,放入高温高压反应釜中倒入强碱溶液,进行溶剂热处理,自然冷却后,用去离子水洗至中性并烘干得到白色絮状前驱体,将此前驱体用强碱溶液浸渍并烘干后,在氮气保护下碳化活化处理,经酸洗并烘干后,用硫脲溶液浸渍并烘干,氮气保护下高温煅烧。本发明操作简单,成本低廉,可实现规模化生产,所得剑麻纤维基氮、硫共掺杂类石墨烯碳材料具有纳米级的片状结构以及稳定的物理化学性质,在微电子器件、传感器、储能设备等领域具有极好的应用前景。

    一种在碳纸上生长四硫七铜一钾微米线阵列的制备方法

    公开(公告)号:CN110885094A

    公开(公告)日:2020-03-17

    申请号:CN201911229740.1

    申请日:2019-12-04

    Abstract: 本发明公开了一种在碳纸上生长四硫七铜一钾微米线阵列的制备方法,该微米线阵列均匀分布在碳纸两面,其直径约为1~10微米,长度约为50~500微米。制备过程主要包括在碳纸上镀铜和水热反应生长四硫七铜一钾微米线阵列两步。碳纸镀铜:先将碳纸进行粗化、敏化和活化处理,再放入配好的镀铜溶液中浸泡,经清洗、干燥后即得镀铜的碳纸。在镀铜的碳纸上生长四硫七铜一钾微米线:先按一定比例配制含有无水乙醇、硫粉和氢氧化钾的混合液,接着将该混合液转移到内衬为聚四氟乙烯的反应釜中,并放入镀铜的碳纸,密封后进行水热反应,反应结束后经清洗、干燥,即得到在碳纸上生长的四硫七铜一钾微米线阵列。

    一种氧化锡纳米片/聚苯胺复合材料的制备方法

    公开(公告)号:CN109686575A

    公开(公告)日:2019-04-26

    申请号:CN201811489683.6

    申请日:2018-12-06

    CPC classification number: H01G11/24 H01G11/30 H01G11/46 H01G11/48 H01G11/86

    Abstract: 本发明公开了一种氧化锡纳米片/聚苯胺复合材料的制备方法。将SnCl2·2H2O和柠檬酸钠溶解在乙醇-水混合溶液中,搅拌均匀后将溶液转移到高压釜中在180℃下反应8小时,冷却至室温,取出产物在空气中400℃下退火2 h,制得SnO2纳米片。将苯胺单体加入到去离子水和盐酸的混合溶液中,再将SnO2纳米片加入到混合溶液中,超声分散10 min后再剧烈搅拌20 min,制得混合液。将APS溶于去离子水中,所得APS溶液滴加入混合液中,在氮气保护下反应12 h,用去离子水清洗混合液至中性,抽滤,所得滤出物在60℃下干燥,即得到氧化锡纳米片/聚苯胺复合材料。本发明制备过程简单、环保、可靠,原料来源广泛、成本低廉,尤其是适合工业化生产。

    花状二硫化钼包覆球形剑麻炭电极材料的制备及其应用

    公开(公告)号:CN109192939A

    公开(公告)日:2019-01-11

    申请号:CN201810888002.7

    申请日:2018-08-06

    Abstract: 本发明公开了一种花状二硫化钼包覆球形剑麻炭电极材料的制备及其应用。以球形剑麻炭为基底、三氧化钼为钼源、硫代乙酰胺为硫源、尿素为还原剂、一步水热后再高温炭化制备花状二硫化钼包覆球形剑麻炭(MoS2@SSFC)的方法,并以此MoS2@SSFC作为锂离子电池负极材料。具体制备步骤:(1)球形剑麻炭(SSFC)制备;(2)复合二硫化钼,水热反应;(3)炭化处理。本发明原材料价廉易得,实验流程简单,条件易控,制备出的花状二硫化钼包覆球形剑麻炭(MoS2@SSFC)作为锂离子电池负极材料,由于其独特的结构,有利于Li+穿插、嵌入,同时具有导电性佳,放电比容量好等优点。

    一种纳米MoO2-MoSe2@SFC锂离子电池负极材料及其制备方法

    公开(公告)号:CN105428612B

    公开(公告)日:2017-12-12

    申请号:CN201510749686.9

    申请日:2015-11-08

    Abstract: 本发明公开了一种纳米MoO2‑MoSe2@SFC锂离子电池负极材料及其制备方法。纳米MoO2‑MoSe2@SFC复合材料以具有多级孔状结构的剑麻纤维炭(SFC)作为基体材料,MoO2和MoSe2均匀分散在其表面及孔内。以四水合钼酸铵、二水合钼酸铵或二氧化钼为钼源,以二氧化硒、亚硒酸钠或硒粉为硒源,以经过炭化、球磨、过筛后的剑麻纤维炭作为基体材料,同时以水合肼和聚乙二醇400分别做还原剂和分散剂,利用高压反应釜进行水热反应,通过改变不同的反应条件可以得到粒径不同的分散体材料。本发明得到的纳米MoO2‑MoSe2@SFC复合物粉体在用作锂离子电池负极材料时可逆容量较高、循环性能较稳定,充放电倍率性能较好,具有较好的应用前景。

    一种高稳定性的近红外水溶性CuS荧光量子点的制备方法

    公开(公告)号:CN104830322B

    公开(公告)日:2016-05-18

    申请号:CN201510168533.5

    申请日:2015-04-12

    Abstract: 本发明公开了一种高稳定性的近红外水溶性CuS荧光量子点的制备方法。在氮气环境和不断搅拌的条件下,将0.0490g~0.2937gN-乙酰-L半胱氨酸溶于100mL的去离子水中,加入1~5mL 浓度为0.1mol/L的CuCl2溶液,混合均匀后,用浓度为1mol/L的NaOH溶液调节体系的pH值至5.5~7.5,加入0.5~1.5mL浓度为0.1mol/L的Na2S溶液,充分反应后,立即密封,避光保存。放置一天后,荧光强度明显增强;放置128天后,高稳定性的近红外水溶性CuS荧光量子点胶体的荧光强度及荧光光谱形状变化不大。本发明制备的高稳定性的近红外水溶性CuS荧光量子点操作简单,容易控制,在细胞荧光探针和免疫分析方面具有良好的应用前景。

    近红外发射的CuxS荧光量子点的制备方法

    公开(公告)号:CN103937492B

    公开(公告)日:2016-03-02

    申请号:CN201410162161.0

    申请日:2014-04-22

    Abstract: 本发明公开了一种近红外发射的CuxS荧光量子点的制备方法。以Na2S·5H2O和CuCl2·5H2O为反应物、L-半胱氨酸为修饰剂、NaOH溶液为调节剂,在pH值为5-9、反应温度为0-60℃且始终保持搅拌的水相体系中合成棕红色CuxS(x=1、2)量子点胶体,该CuxS量子点胶体具有近红外发射荧光的特点,其中最佳激发波长为490nm,最大发射波长位于700-780nm处;无水乙醇聚沉,干燥,得CuxS荧光量子点粉末;CuxS的形貌为球形微粒,平均粒径约为3-5nm。本发明设备简单,操作方便,容易控制,CuxS量子点胶体能作为细胞成像及荧光示踪探针等应用于生物及医学等领域。

    基于化学活化的剑麻炭纤维制备锂离子电池负极材料的方法

    公开(公告)号:CN103441242B

    公开(公告)日:2015-10-28

    申请号:CN201310416581.2

    申请日:2013-09-13

    Abstract: 本发明公开了一种基于化学活化的剑麻炭纤维制备锂离子电池负极材料的方法。将剑麻纤维揉搓、洗涤和烘干;用质量分数为15-25%的ZnCl2溶液按ZnCl2和剑麻纤维的质量比为2-6:1浸渍比浸泡24小时,用去离子水冲洗,80-100℃经12-24小时烘干;置于真空管式电阻炉中,在气体流量为40ml/min的氮气气氛下炭化0.5-1小时,炭化温度为700-1000℃,升温速率为1-10℃/min,自然冷却后即获得黑色纤维状剑活性炭纤维。以锂片为正极材料、以制得的剑麻活性炭纤维经研磨后做为负极材料组装成锂离子电池,进行恒流充放电测试,结果显示,经过化学改性处理后的剑麻炭纤维相比于未经处理的剑麻炭纤维和市售活性炭有着更加优良的电化学性能。

    近红外发光量子点荧光光谱法测定纳米金浓度的方法

    公开(公告)号:CN104007095A

    公开(公告)日:2014-08-27

    申请号:CN201410237382.X

    申请日:2014-05-30

    Abstract: 本发明公开了一种近红外发光量子点荧光光谱法测定纳米金浓度的方法。在含有近红外发光的Ag2S、Ag2Se或Ag2Te量子点的体系中,加入不同体积的待测纳米金,由于待测纳米金使得近红外发光的Ag2S、Ag2Se或Ag2Te量子点的荧光强度产生有规律的变化,通过分析近红外发光的Ag2S、Ag2Se或Ag2Te量子点点荧光强度变化的量来实现对待纳米金浓度的定量检测;近红外发光的Ag2S、Ag2Se或Ag2Te量子点对纳米金的检测范围分别为5.93-27.09×10-6mol/l、3.39-28.79×10-6mol/l或3.39-16.93×10-6mol/l;其相关系数(r2)分别为0.9956、0.9954或0.9865。本发明的检测方法操作简单、检测快速、成本低。

Patent Agency Ranking