-
公开(公告)号:CN106833626B
公开(公告)日:2018-04-24
申请号:CN201710082769.6
申请日:2017-02-16
Applicant: 吉林大学
IPC: C09K11/61
Abstract: 本发明公开了一种基于Sm2+离子的上转换发光复合材料,属于上转换发光材料技术领域,具体涉及一种分别由包含三价镧系Yb3+离子的碱土金属氟化物与包含二价钐离子Sm2+的碱土金属氟卤化物上转换发光复合材料。以碱土金属阳离子的摩尔浓度之和为100%计算,Yb3+离子浓度为0.5~2mmol%及Sm2+离子浓度为0.1~2mmol%。在980nm近红外光激发下,材料中二价钐离子发射峰值位于631nm(5D1→7F0),644nm(5D1→7F1),665nm(5D1→7F2),689nm(5D0→7F0),704nm(5D0→7F1)和729nm(5D0→7F2)的红色区域上转换发光。因此,本发明提供的基于二价钐离子Sm2+的上转换发光材料具有独特的光学性质。
-
公开(公告)号:CN106701082B
公开(公告)日:2018-04-24
申请号:CN201710082747.X
申请日:2017-02-16
Applicant: 吉林大学
IPC: C09K11/85
Abstract: 本发明公开了一种在980nm近红外光激发下的基于Sm2+离子上转换发光复合材料的制备方法,属于上转换发光材料技术领域,具体涉及一种分别由包含三价镧系Yb3+离子的碱土金属氟化物与包含二价钐离子Sm2+的碱土金属氟卤化物的上转换发光复合材料。惰性气体环境下镱离子不易被还原;还原气氛条件下钐离子被充分还原;最后经过煅烧二者混合样品实现镱离子团簇及二价钐离子同时存在。采用三步法制备样品使其同时含有镱离子团簇以及二价钐离子,实现镱离子与钐离子之间有效的能量传递。在980nm近红外光激发下,材料中二价钐离子发射峰值位于631nm(5D1→7F0),644nm(5D1→7F1),665nm(5D1→7F2),689nm(5D0→7F0),704nm(5D0→7F1)和729nm(5D0→7F2)红色区域的上转换发光。
-
公开(公告)号:CN102618284B
公开(公告)日:2014-10-01
申请号:CN201210067707.5
申请日:2012-03-15
Applicant: 吉林大学
Abstract: 本发明属于生物荧光标记物制备与应用技术领域,具体涉及一种Yb和Ho离子双敏化Tm离子的强近红外上转换发光生物荧光纳米颗粒及其应用。该上转换发光材料利用Yb/Ho/Tm之间的能量传递,可以在900~1064nm近红外光诱导下获得更高效率的800nm近红外上转换光发射。其优势在于激发光和发射光均位于生物组织的光学窗口750nm~1000nm,800nm处可以发射增强的近红外上转换发光。因此,该范围的近红外光与可见光相比在生物体内具有较高的穿透能力,可以实现生物体内较深层次生物组织的荧光检测和示踪等功能。本发明所获得材料在800nm附近的近红外发光强度大幅度提高,易于检测,制备工艺简单。
-
公开(公告)号:CN116285887A
公开(公告)日:2023-06-23
申请号:CN202310297071.1
申请日:2023-03-24
Applicant: 吉林大学
Abstract: 本发明公开了一种基于光诱导黑体吸收效应的吸光材料及其应用,属于光学材料技术领域,所述吸光材料由一种基质材料及掺杂剂组成,并利用相应的激发光照射掺杂后的材料获得基于光诱导黑体吸收效应的吸光材料;其中,所述掺杂剂对所使用的激发光具有不小于0.1%的光吸收,掺杂剂的掺杂浓度范围为0.1mol%~80mol%。该材料与待加工的材料相结合后,通过诱导激光照射,待加工材料可以进入光致黑体吸收状态,此状态下的待加工材料在宽波段(200nm~2500nm)范围内的光吸收率可以达到90%以上。
-
公开(公告)号:CN115558499A
公开(公告)日:2023-01-03
申请号:CN202211158781.8
申请日:2022-09-22
Applicant: 吉林大学
Abstract: 本发明公开了一种基于奥斯瓦尔德熟化过程控制的具有核壳结构的纳米材料及其制备方法,属于纳米材料制备技术领域,本发明的制备方法通过调整前驱体溶液的浓度及注射次数,可以实现制备的纳米材料粒径的调节,并可实现具有核壳结构的纳米材料的制备;在反应物总量且反应时间相同的情况下,与未控制奥斯瓦尔德熟化过程的纳米晶体相比,使用该控制方法合成的合成的核壳纳米材料不仅实现了壳层组分和厚度的调节,而且具备更均匀的形貌和更强的上转换发光特性。良好的光学质量。
-
公开(公告)号:CN114479840B
公开(公告)日:2022-12-30
申请号:CN202111620825.X
申请日:2021-12-28
Applicant: 吉林大学
Abstract: 本发明公开了一种通过氧化锆修饰增强的Yb3+团簇合作发光材料、制备方法及其应用,属于团簇合作发光材料技术领域,由团簇合作发光材料与修饰材料组成,具体通过水热法或高温固相法将修饰材料修饰在团簇合作发光材料上,所述团簇合作发光材料为CaF2:Yb3+,所述修饰材料为ZrO2,其中,CaF2:Yb3+是以三价镧系镱离子Yb3+作为发光离子、碱土金属氟化物CaF2作为基质材料制备得到;以全部金属阳离子的摩尔浓度和为100%计算,三价镱离子Yb3+的掺杂浓度为0.5mol%‑1mol%;在980nm近红外光的激发下,该材料中的Yb3+团簇可以发射出峰值~487nm、501nm、517nm、522nm的绿光区合作发光以及~343nm紫外合作发光,并使得其在紫外区的发光强度大幅度提升一倍以上;该制备方法的修饰方法简单,样品的发光学性能稳定。
-
公开(公告)号:CN111892930B
公开(公告)日:2022-09-13
申请号:CN202010685715.0
申请日:2020-07-16
Applicant: 吉林大学
Abstract: 本发明公开了一种具有三基色荧光开关特性的加密材料及其应用,属于纳米荧光材料技术领域。该加密材料是由δ‑MnO2纳米片修饰的正交三基色上转换发光纳米晶构成。正交三基色发光的纳米晶是基于镧系离子掺杂NaYF4基质构成的一核五壳层结构,该纳米晶在三个不同波长近红外光的激发下,能够产生相互独立的三基色上转换发光;修饰的δ‑MnO2纳米薄片可以作为荧光猝灭剂来猝灭纳米晶的三基色发光;利用修饰的δ‑MnO2纳米薄片的分解和再生,能够实现纳米晶三基色荧光的开关,实现对信息的解密和加密。本发明提供的一种具有三基色荧光开关特性的加密材料,与传统荧光防伪材料相比,该加密材料具有加密性高、多色荧光显示以及重复加密和解密等特点,适用于机密信息的安全保护。
-
公开(公告)号:CN111876155B
公开(公告)日:2022-05-31
申请号:CN202010685751.7
申请日:2020-07-16
Applicant: 吉林大学
Abstract: 本发明提供了一种基于三元正交激发响应三基色上转换发光的五层核壳结构纳米材料,属于纳米荧光材料技术领域。五层核壳结构材料中的每一层(核)均由声子能量低、荧光效率高的六方相NaYF4作为纳米基质材料;五层核壳结构材料中的发光层(核)是由分别掺杂敏化剂和激活剂离子组成;通过核壳结构,该材料降低了不同发光区域之间的相互干扰,实现三种发光过程相互独立;通过调节五层核壳结构中绿光发射层的厚度,可以有效减少在980nm近红外光激发下第四壳层产生不必要绿光的干扰,从而获得较纯的蓝光发射。本发明的材料解决了双色发光难以实现的白光以及多彩发光调节等一些问题,在白光LED、彩色显示、荧光编码、防伪及信息加密等领域具有广泛的应用前景。
-
公开(公告)号:CN106701082A
公开(公告)日:2017-05-24
申请号:CN201710082747.X
申请日:2017-02-16
Applicant: 吉林大学
IPC: C09K11/85
CPC classification number: C09K11/7773
Abstract: 本发明公开了一种在980nm近红外光激发下的基于Sm2+离子上转换发光复合材料的制备方法,属于上转换发光材料技术领域,具体涉及一种分别由包含三价镧系Yb3+离子的碱土金属氟化物与包含二价钐离子Sm2+的碱土金属氟卤化物的上转换发光复合材料。惰性气体环境下镱离子不易被还原;还原气氛条件下钐离子被充分还原;最后经过煅烧二者混合样品实现镱离子团簇及二价钐离子同时存在。采用三步法制备样品使其同时含有镱离子团簇以及二价钐离子,实现镱离子与钐离子之间有效的能量传递。在980nm近红外光激发下,材料中二价钐离子发射峰值位于631nm(5D1→7F0),644nm(5D1→7F1),665nm(5D1→7F2),689nm(5D0→7F0),704nm(5D0→7F1)和729nm(5D0→7F2)红色区域的上转换发光。
-
公开(公告)号:CN105969347A
公开(公告)日:2016-09-28
申请号:CN201610379038.3
申请日:2016-05-31
Applicant: 吉林大学
IPC: C09K11/61
CPC classification number: Y02B20/181 , C09K11/7791
Abstract: 本发明的目的是提供一种在~980nm近红外光激发下获得上转换白光的方法。首先,制备Yb3+/Eu3+/Y3+共掺杂CaF2的上转换发光材料。在~980nm近红外光激发下,材料中的Yb3+离子不仅作为敏化剂为Eu3+传递能量并使其激发,同时作为激活剂合作发射480~540nm的蓝绿光。Eu3+则作为激活剂提供红色和蓝色发光。更进一步,利用不同掺杂浓度的Y3+猝灭Yb3+的合作发光,从而达到调节三种基色比例的目的,并且在Y3+浓度为1mol%时实现了材料的上转换白光发射。
-
-
-
-
-
-
-
-
-