-
公开(公告)号:CN113929469B
公开(公告)日:2022-10-21
申请号:CN202111345558.X
申请日:2021-11-15
Applicant: 哈尔滨工业大学
IPC: C04B35/584 , C04B35/622 , C04B35/10 , C04B35/5835 , C04B35/565
Abstract: 本发明提供了一种抗摔陶瓷材料及其制备方法,涉及陶瓷材料技术领域,所述抗摔陶瓷材料的制备方法包括:将30‑80体积分数的陶瓷粉体、5‑50体积分数的陶瓷前驱体与1‑20体积分数的烧结助剂混合,形成第一混合粉体;将第一混合粉体置于惰性气氛或第一还原气氛中进行热处理,得到第二混合粉体;将第二混合粉体与醇类试剂混合,得到陶瓷浆料;将氮化硼先驱体溶于去离子水中得到饱和溶液,并将所述饱和溶液加入到所述陶瓷浆料中,搅拌至混合后的陶瓷浆料中所述去离子水与所述醇类试剂的质量比为1:40‑1:20,经干燥后,得到第三混合粉体;将第三混合粉体于第二还原气氛中进行热处理、成型、烧结后得到抗摔陶瓷材料。本发明抗摔陶瓷材料抗摔能力强,使用可靠性高。
-
公开(公告)号:CN114262229B
公开(公告)日:2022-09-16
申请号:CN202210003862.4
申请日:2022-01-04
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/56 , C04B35/622 , C04B35/64
Abstract: 一种高强韧二硼化物‑碳化物复相高熵陶瓷的制备方法和应用,它属于陶瓷材料技术领域,具体涉及一种高强韧的二硼化物‑碳化物复相高熵陶瓷材料的制备方法和应用。本发明的目的是要解决现有单相高熵陶瓷材料烧结困难,致密度低和断裂韧性差,限制了其应用的问题。方法:制备二硼化物粉体和碳化钛的混合粉末;二、热压烧结。一种高强韧二硼化物‑碳化物复相高熵陶瓷在核反应堆和超高温领域中应用。本发明制备的复相陶瓷的致密度均大于97%,强度和韧性均得到显著提升,室温下陶瓷的硬度为35~40GPa,三点弯曲强度为800~1100MPa,断裂韧性为6~8MPa·m1/2。本发明可获得一种高强韧二硼化物‑碳化物复相高熵陶瓷。
-
公开(公告)号:CN110171973B
公开(公告)日:2022-07-12
申请号:CN201910502477.2
申请日:2019-06-11
Applicant: 哈尔滨工业大学
IPC: C04B35/52 , C04B35/626 , C01B32/198 , B33Y70/00 , B33Y10/00 , H01B13/00
Abstract: 一种3D打印耐高温石墨烯基导电结构的方法,本发明涉及一种3D打印导电结构的方法。解决现有石墨烯基电极浆料固相含量低、成型后会收缩变形导致结构难以维持设计形状与精度的问题。制备方法:一、制备氧化石墨烯;二、制备氧化石墨烯/石墨3D打印浆料;三、氧化石墨烯/石墨3D打印成型;四、3D打印氧化石墨烯/石墨高温还原。本发明用于3D打印耐高温石墨烯基导电结构。
-
公开(公告)号:CN111196726B
公开(公告)日:2022-07-08
申请号:CN202010025977.4
申请日:2020-01-06
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种SiBCN‑Ta4HfC5复相陶瓷及其制备方法,所述制备方法包括:制备Ta4HfC5单相纳米晶粉体;将所述Ta4HfC5单相纳米晶粉体、六方氮化硼、立方硅粉和石墨混合后进行高能球磨,得到非晶‑纳米晶复合粉体;将所述非晶‑纳米晶复合粉体进行烧结,即制得SiBCN‑Ta4HfC5复相陶瓷。本发明通过两步机械合金化将Ta4HfC5作为添加相引入SiBCN系列陶瓷中,超高温相Ta4HfC5以纳米晶的形式均匀分散于非晶的SiBCN基体当中,提高了复相陶瓷的力学和耐高温性能,使其在可在更高的温度下服役。
-
公开(公告)号:CN110628056B
公开(公告)日:2022-05-24
申请号:CN201810648868.0
申请日:2018-06-22
Applicant: 哈尔滨工业大学
Abstract: 本发明公开一种石墨烯/聚吡咯颗粒复合凝胶薄膜及其制备方法,该制备方法包括如下步骤:S1:将吡咯与盐酸溶液混合,形成凝胶池溶液;S2:将氧化石墨烯与高氧化价态金属氧化物颗粒分散液混合均匀,形成氧化石墨烯/高氧化价态金属氧化物混合分散液;S3:将所述混合分散液通过喷口挤入凝胶池溶液,生成氧化石墨烯/聚吡咯颗粒复合水凝胶薄膜;S4:将所述氧化石墨烯/聚吡咯颗粒复合水凝胶薄膜加入还原性溶液中,生成石墨烯/聚吡咯颗粒复合水凝胶薄膜;S5:将所述石墨烯/聚吡咯颗粒复合水凝胶薄膜进行干燥处理,得到石墨烯/聚吡咯颗粒复合凝胶薄膜。用此种方法制备的石墨烯/聚吡咯颗粒复合薄膜中的聚吡咯颗粒分布均匀。
-
公开(公告)号:CN112958765B
公开(公告)日:2022-01-21
申请号:CN202110211177.6
申请日:2021-02-25
Applicant: 哈尔滨工业大学
Abstract: 一种激光辅助复杂曲面异形结构共形3D打印的方法,本发明涉及一种曲面异形结构共形3D打印的方法。针对现有直接书写式等接触式3D打印技术难以实现复杂非展开曲面结构表面的共形制造,打印线宽精度低的问题。方法:一、称取;二、制备激光固化浆料;三、涂覆;四、激光器与基板的固定;五、3D激光打印;六、清洗;七、烧结。本发明用于激光辅助复杂曲面异形结构共形3D打印。
-
公开(公告)号:CN110483070B
公开(公告)日:2021-11-09
申请号:CN201910872252.6
申请日:2019-09-16
Applicant: 哈尔滨工业大学
IPC: C04B35/628 , C04B35/80 , C04B35/622 , C04B35/58
Abstract: 本发明提供了一种短切SiC纤维的复合涂层、SiBCN陶瓷复合材料及制备方法,涉及陶瓷复合材料领域,短切SiC纤维的复合涂层的制备方法,包括以下步骤:SiC纤维预处理步骤:将SiC纤维进行热处理、分散酸洗和过滤干燥,从而得到预处理后的纤维;非晶C涂层的制备步骤:称取银粉,将所述银粉压制成银片,将所述银片放置具有双层结构的石墨坩埚内,并裁剪所需孔大小的石墨纸,用所述石墨纸将石墨坩埚的上下两层隔开,然后将SiC纤维放置在所述石墨纸中间;将装有所述银片、石墨纸和SiC纤维的石墨坩埚放置在热压炉中进行热处理,得到非晶C涂层改性的SiC纤维。本发明所述的短切SiC纤维的复合涂层的制备方法,周期短、产率高、安全环保,适于工业化生产。
-
公开(公告)号:CN110006776B
公开(公告)日:2021-08-24
申请号:CN201910298067.0
申请日:2019-04-12
Applicant: 哈尔滨工业大学
IPC: G01N5/04 , G01N23/2251 , G01N23/2273 , G01B11/30
Abstract: 一种针对霍尔电推进器通道材料抗溅射性能的评价方法,本发明涉及陶瓷材料抗溅射性能的评价方法。解决现有缺少对霍尔电推进器通道材料抗溅射性能的筛选与评价方法的问题。方法:一、将霍尔电推进器通道所用的陶瓷材料加工,得到试样;二、将试样置于靶台上,设定离子束流与试样法向夹角、离子源与试样的距离及靶台转速;三、抽真空,通入气体工质,调整气体工质;四、启动离子源,依次设定离子能量、阳极电压及加速电压,设定离子束流及电子束流,进行溅射试验,得到溅射后的试样;五、计算溅射速率v及溅射产额Y,分析溅射后的试样表面粗糙度、价键组成、元素含量及表面形貌。本发明用于针对霍尔电推进器通道材料抗溅射性能的评价。
-
公开(公告)号:CN109650864B
公开(公告)日:2021-06-25
申请号:CN201910099482.3
申请日:2019-01-31
Applicant: 哈尔滨工业大学
IPC: C04B35/195 , C04B35/622 , C04B35/626
Abstract: 本发明公开一种锶长石基复合陶瓷透波材料及其制备方法,涉及陶瓷基复合材料的制备技术领域,所述锶长石基复合陶瓷透波材料的制备方法包括:S1:称取h‑BN粉、SrCO3粉、Al2O3粉和SiO2粉并混合,得到第一粉体;S2:将所述第一粉体进行球磨,得到第二粉体;S3:将所述第二粉体压制成生坯,得到预制生坯;S4:对所述预制生坯进行无压烧结,得到锶长石基复合陶瓷透波材料。本发明提供的锶长石基复合陶瓷透波材料的制备方法,通过原位合成反应来将h‑BN引入锶长石中,使得制备的锶长石基复合陶瓷透波材料不仅具有良好的力学及可加工性能,同时,还具有良好的介电和耐热冲击性能。
-
公开(公告)号:CN111321440B
公开(公告)日:2021-06-18
申请号:CN202010320808.3
申请日:2020-04-22
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种金属表面复合涂层的制备方法及改性金属材料。所述金属表面复合涂层的制备方法包括:配置包含有低表面能有机纳米粉体的复合电解液;控制所述复合电解液的温度为60‑90℃,在400V‑1000V的脉冲电压下,在所述复合电解液中利用强脉冲高频放电反应及辅助交联固化在所述金属基体表面形成复合涂层,所述复合涂层包括陶瓷层和聚合物层。本发明通过在电解液中添加低表面能有机纳米粉体,在强脉冲电压及高温电解液的微区环境下,通过活化诱导、静电吸附、辅助交联、化学镶嵌的协同作用,将低表面能有机纳米粉体一步沉积于金属基体表面,制备出具有分级微纳米结构的大厚度涂层,实现低表面能的有机聚合物在陶瓷层表面的全覆盖,大幅提高金属基体的耐蚀性。
-
-
-
-
-
-
-
-
-