-
公开(公告)号:CN114239749A
公开(公告)日:2022-03-25
申请号:CN202111593241.8
申请日:2021-12-23
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于残差收缩及双向长短期记忆网络的调制识别方法,其特征在于,包括如下步骤:1)信号预处理;2)构建基于残差收缩及双向长短期记忆网络训练模型;3)训练网络;4)分类识别。这种方法训练特征参数少、步骤简洁、复杂度低,无需对信号进行复杂的预处理及人工特征提取,省去了人为提取特征的时间成本,适用范围广、抗噪性能好、识别精度高。
-
公开(公告)号:CN114218984A
公开(公告)日:2022-03-22
申请号:CN202111488160.1
申请日:2021-12-07
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于多视图学习的射频指纹识别方法,其特包括如下步骤:1)采集每个待识别无线设备射频信号;2)数据处理并加噪声;3)分割数据并制作数据集一、二和三;4)设计复数值神经网络子组件并搭建复数值神经网;5)搭建子神经网络一6)搭建二维卷积神经网络二、三;7)合成多视图神经网络;8)训练神经网络;9)射频指纹识别。这种方法能利用样本数据并让计算机自动提取信号指纹特征,对样本数量要求降低的同时能改善低信噪比时的识别精度,数据特征提取效率高识别精度高。
-
公开(公告)号:CN112087774A
公开(公告)日:2020-12-15
申请号:CN202010961558.1
申请日:2020-09-14
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于残差神经网络的通信辐射源个体识别方法,其特征在于,包括如下步骤:1)接收通信辐射源信号;2)计算信号的双谱;3)实际信号双谱非参数间接估计;4)获得双谱等高图;5)训练残差网络;6)采用训练好的残差神经网络检测识别不同的通信辐射源。这种方法能减少信号噪声干扰、计算量小、识别的准确率高。
-
公开(公告)号:CN112731367B
公开(公告)日:2023-07-14
申请号:CN202011506299.X
申请日:2020-12-18
Applicant: 桂林电子科技大学
IPC: G01S13/58
Abstract: 本发明公开了基于涡旋电磁波的旋翼目标特征分析及提取方法,其特征是,包括如下步骤:S1建立涡旋电磁波对旋翼目标的回波数学模型;S2回波信号的特征分析;S3分别发射正负模态数的涡旋电磁波,计算回波信号中的总多普勒;S4和差运算;S5改变涡旋电磁波模态数,重复步骤S3、S4;S6整理微多普勒频率和旋转多普勒频率。这种方法能分离出微多普勒频率和旋转多普勒频率,对旋翼目标的探测和识别准确率高。
-
公开(公告)号:CN111639595B
公开(公告)日:2022-03-18
申请号:CN202010473731.3
申请日:2020-05-29
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于权重不可知神经网络的无人机微动特征信号检测方法,其特征是,包括如下步骤:1)计算信号的循环谱;2)通过MATLAB处理得到循环谱等高图,并选择观测区域;3)训练权重不可知神经网络;4)利用训练好的权重不可知神经网络进行微动特征识别。这种方法有很好的抗干扰性,神经网络的结构更简单,计算量更小,对无人机微动特征信号识别的准确率更高。
-
-
公开(公告)号:CN112731367A
公开(公告)日:2021-04-30
申请号:CN202011506299.X
申请日:2020-12-18
Applicant: 桂林电子科技大学
IPC: G01S13/58
Abstract: 本发明公开了基于涡旋电磁波的旋翼目标特征分析及提取方法,其特征是,包括如下步骤:S1建立涡旋电磁波对旋翼目标的回波数学模型;S2回波信号的特征分析;S3分别发射正负模态数的涡旋电磁波,计算回波信号中的总多普勒;S4和差运算;S5改变涡旋电磁波模态数,重复步骤S3、S4;S6整理微多普勒频率和旋转多普勒频率。这种方法能分离出微多普勒频率和旋转多普勒频率,对旋翼目标的探测和识别准确率高。
-
-
-
-
-
-