-
公开(公告)号:CN114894305B
公开(公告)日:2024-12-31
申请号:CN202210478802.8
申请日:2022-04-28
Applicant: 西北核技术研究所
IPC: G01J1/44
Abstract: 本发明涉及一种光电探测器D1,具体涉及一种光电探测器输出信号大量程探测电路及其探测方法,解决大强度范围激光辐照光电探测器D1时产生的大量程输出信号难以全量程高精度探测的技术问题。一种光电探测器输出信号大量程探测电路,包括放大器A1、放大器A2、电压采集设备ADC1、电压采集设备ADC2以及串联的光电探测器D1、取样电阻R1与取样电阻R2;光电探测器D1设置在激光器的出光光路上;放大器A1的两个输入端分别连接在取样电阻R1的两端,其输出端与电压采集设备ADC1的输入端连接;放大器A2的两个输入端分别连接在取样电阻R2的两端,其输出端与电压采集设备ADC2的输入端连接。本发明可实现对5至6个数量级强度的输入光信号精确探测。
-
公开(公告)号:CN115389017B
公开(公告)日:2024-06-21
申请号:CN202211008049.2
申请日:2022-08-22
Applicant: 西北核技术研究所
IPC: G01J1/44
Abstract: 本发明为解决现有脉冲激光功率测量方法存在测量条件苛刻且测量精度较低的问题,而提供了一种基于积分电路的脉冲激光功率测量方法,适用于数据采样频率较低且无同步触发信号的条件。该测量方法是利用典型RC积分电路对脉冲激光辐照光电探测器产生的电压信号进行信号调理放大,利用模拟数字转换器对放大后的电压信号进行等间隔采样,根据积分电路特性以及激光功率解析表达式回推计算,当回推计算结果满足误差时,可以确定脉冲激光出光零时刻,进一步计算待测脉冲激光功率。
-
公开(公告)号:CN115184945B
公开(公告)日:2024-06-21
申请号:CN202210945190.9
申请日:2022-08-08
Applicant: 西北核技术研究所
IPC: G01S17/10 , G01S7/4861
Abstract: 本发明涉及脉冲激光信号复原,具体涉及一种基于阵列探测法测量脉冲激光的信号复原方法。为解决现有的复原方法不能满足窄脉宽、低重频脉冲激光测量需求的技术问题,本发明提供的一种基于阵列探测法测量脉冲激光的信号复原方法,包括以下步骤:将脉冲激光信号转换为N路脉冲电信号;使用N个电荷积分电路分别对N路脉冲电信号展宽,得到N路脉冲展宽电信号,并生成N个电荷放电曲线;对N路脉冲展宽电信号进行异步采样,得到N组采样数据;根据所得N组采样数据确定时间零点t0;在N条电荷放电曲线上分别选取一点作为采样点,通过N个采样点和唯一的时间零点t0,可分别计算得到N个光电探测器处的光强序列,进而复原脉冲激光信号。
-
公开(公告)号:CN114608700B
公开(公告)日:2024-06-21
申请号:CN202210189287.1
申请日:2022-02-28
Applicant: 西北核技术研究所
Abstract: 本发明提供了一种基于定量水直接吸收的激光能量测量装置及方法,以解决现有技术中高能激光能量测量装置系统庞大、装置复杂以及测量不确定度高的技术问题。本发明提供的一种基于定量水直接吸收的激光能量测量装置,包括密封腔体、热吸收介质水、第一温度传感器以及压力传感器;所述密封腔体四周设置有外壁,其激光迎光面设置有玻璃窗口,外壁和玻璃窗口的端面密封并合围形成密封腔体;密封腔体内设置有热吸收介质水以及与外部电机连接的搅拌器;所述外壁的内侧和外侧均设置有隔热层。本发明提供的测量方法通过密封腔体内的热吸收介质水作为激光吸收介质,利用热吸收介质水的最高温度与初始温度之间的温差获得入射激光的总能量。
-
公开(公告)号:CN115165084B
公开(公告)日:2024-06-11
申请号:CN202210946004.3
申请日:2022-08-08
Applicant: 西北核技术研究所
IPC: G01J1/04
Abstract: 本发明涉及高能激光参数测试,具体涉及一种基于强度分布特征的高能激光分区防护方法及装置,目的是解决激光参数测量时,现有的激光防护装置无法同时保证激光参数测试设备和飞行平台防护安全的技术问题。本发明提供一种基于强度分布特征的高能激光分区防护方法及装置,该方法包括以下步骤:确定高能激光的强度分布特征;根据强度分布特征将高能激光划分为多个光强区域,使得多个光强区域的激光强度阈值,按照大小依次排列后呈阶梯状分布;根据强度分布特征设置多个防护区域;根据多个光强区域的激光强度阈值,分别确定多个防护区域的抗激光损伤阈值;将高能激光的多个光强区域,分别照射至与之对应的防护区域内,即可实现分区防护。
-
公开(公告)号:CN117387751A
公开(公告)日:2024-01-12
申请号:CN202311385034.2
申请日:2023-10-24
Applicant: 西北核技术研究所
IPC: G01J1/00
Abstract: 本发明涉及一种光强分布测量方法,特别涉及一种基于光阑进行激光功率取样的激光光斑复原方法。解决了采用现有测量方法对激光光斑光强分布测量时,对尺寸小于光阑尺寸的精细光斑结构的光强分布难以测量的问题。该方法包括以下步骤:步骤一:基于光阑进行激光功率取样测量,以获得待测平面上所有取样位置的激光功率取样值;步骤二:将待测平面上的激光光斑图像划分成多个像素点,定义每个像素点的像素的强度值为该像素点的原始光强;然后建立待测平面上所有取样位置的激光功率取样值和待测平面上所有像素点的原始光强的对应关系矩阵;步骤三:利用反问题求解法对对应关系矩阵求解,得到待测平面上所有像素点的原始光强序列,完成激光光斑复原。
-
公开(公告)号:CN116067528A
公开(公告)日:2023-05-05
申请号:CN202310130239.X
申请日:2023-02-17
Applicant: 西北核技术研究所
Abstract: 本发明涉及一种基于热平衡型水直接吸收的激光能量测量装置及方法,主要解决现有激光测量装置无法在满足体积结构较小的同时,实现高能激光长时间、高精度测量的问题。包括冷却装置,分别连接于冷却装置两端的腔体前壳和腔体后壳;腔体前壳上设置有窗口;冷却装置包括多个热电堆、冷却零件、接环、密封件、进水管、出水管;多个冷却零件和接环沿前后方向间隔设置,接环设置于相邻两个冷却零件之间;沿前后方向首个冷却零件与腔体前壳连接,最后一个冷却零件与腔体后壳连接;冷却零件两端分别设置有热电堆;冷却零件设置有水道,密封件套装于对应冷却零件周侧,进水管和出水管与对应冷却零件内的水道相连通,另一端与外部冷水机连接。
-
公开(公告)号:CN114993462A
公开(公告)日:2022-09-02
申请号:CN202210351481.5
申请日:2022-04-02
Applicant: 西北核技术研究所
Abstract: 本发明具体涉及一种消除偏振影响的光压法高能激光功率测量装置,解决了现有激光因偏振态未知带来的反射镜传输效率计算误差较大的问题,实现了高能激光功率的高精度测量。一种消除偏振影响的光压法高能激光功率测量装置,包括光路系统以及机壳组件;所述光路系统位于壳体组件内;所述光路系统包括光压转换模块和沿光线传播方向级联设置的第一级输入反射镜、第二级输入反射镜、光压接收反射镜和输出反射镜,光压接收反射镜的背光面紧贴在光压转换模块测量面上;所述第一级输入反射镜和第二级输入反射镜正交放置;入射至所述光压接收反射镜的激光的方向与反射镜法线夹角为θ,θ=5°~10°。本发明实现了高能激光功率的高精度测量。
-
公开(公告)号:CN114974470A
公开(公告)日:2022-08-30
申请号:CN202210470299.1
申请日:2022-04-28
Applicant: 西北核技术研究所
Abstract: 本发明具体涉及激光光斑测量用漫反射材料BRDF的获取方法,用于解决目前在激光辐照下的BRDF散射特性模型和计算方法误差较大,且整合现有模型过程复杂,耗时较长的问题。激光光斑测量用漫反射材料BRDF的获取方法,步骤1,根据模型,得到漫反射材料随机粗糙表面高度分布函数R和空间相干函数ρ;步骤2,根据漫反射材料随机粗糙表面高度分布函数W推导获得微元取向概率分布R:步骤3,基于反射原理,推算出θa和φa的表达式,并代入微元取向概率分布R中获得材料镜面反射部分概率密度分布函数P;步骤4,将材料镜面反射部分概率密度分布函数P代入相应模型,推导获得材料BRDF的表达式;步骤5,通过试验数据拟合,进而获得材料的BRDF具体表达式。
-
公开(公告)号:CN114739641A
公开(公告)日:2022-07-12
申请号:CN202210407367.X
申请日:2022-04-15
Applicant: 西北核技术研究所
Abstract: 本发明涉及一种激光参数测量方法,具体涉及一种用于高能激光扩束的反射锥制作方法及反射锥,解决在一定的吸收腔体尺寸结构限制下,全吸收型能量计反射锥难以满足不同尺寸光斑高能激光扩束需求的技术问题。本发明一种用于高能激光扩束的反射锥制作方法,采用分段式结构,可兼顾不同光斑尺寸高能激光的扩束需求;然后根据光线约束条件建立反射锥面型函数f(x)的约束方程组,最后利用数值迭代求解算法计算出反射锥的面型函数;实现在一定的吸收腔体尺寸结构下,兼顾不同尺寸光斑高能激光的扩束需求;本发明还提供了一种反射锥,可以满足实际应用中对不同反射锥的需求。
-
-
-
-
-
-
-
-
-