一种蒸汽发生器传热管管板缝隙区涡流精准测量方法

    公开(公告)号:CN106932467B

    公开(公告)日:2020-08-21

    申请号:CN201511019152.7

    申请日:2015-12-30

    Abstract: 本发明属于涡流测量领域,具体涉及一种蒸汽发生器传热管管板缝隙区涡流精准测量方法。包括步骤一:设置涡流仪器的检测频率、步骤二:读入标定试验件检测数据、步骤三:读入一根传热管涡流检测数据、步骤四:对步骤三中确定的检测范围内的信号进行峰峰值测量或者最大水平分量测量以确定信号拐点、步骤五:管板区、起胀点位置的精确校准、步骤六:依据采样率、标定曲线以及步骤四所得的管板区、起胀点位置计算管板缝隙区尺寸、胀管平均内径、过胀点检测、欠胀点位置、步骤七:重复步骤三至步骤六,得到蒸汽发生器全部传热管的管板缝隙区尺寸、胀管平均内径、过胀点检测、欠胀点位置。

    一种超声三维体数据在线显示及分析方法

    公开(公告)号:CN111353328A

    公开(公告)日:2020-06-30

    申请号:CN201811563185.1

    申请日:2018-12-20

    Abstract: 本发明涉及三维数据显示技术领域,具体公开了一种超声三维体数据在线显示及分析方法。该方法包括:1、对超声三维体数据进行数据压缩;2、利用数据总线将压缩后的超声三维体数据传递给GPU,并在GPU中进行并行解压;3、以光线投射模型直接进行多分辨率渲染;4、利用而为图像处理算法及机器学习算法,进行三维空间的数据快速处理;5、根据核设备的典型缺陷空间分布特征,划分有效数据区域,并自动剔除结构波信号;6、以探头声束相关性,对阈值范围内的空间块数据进行分类识别和提取。该方法便于用户清晰直观的观察被检物体的超声检测结果,并利用体数据的自动分析方法,提高超声信号自动分析的可行性和可靠性。

    一种超声波信号自动采集与协同控制系统及方法

    公开(公告)号:CN111351849A

    公开(公告)日:2020-06-30

    申请号:CN201811562098.4

    申请日:2018-12-20

    Abstract: 本发明涉及多系统协同控制技术领域,具体公开了一种超声波信号自动采集与协同控制系统及方法。该系统中协同控制系统模块与用户需求模块相连接,通过用户需求模块创建的超声检查计划,利用协同控制系统模块中的超声参数设置模块,对外部的超声采集模块进行设置,并将超声采集模块获得的数据传输至协同控制系统模块中的超声数据分析模块进行超声数据的分析后,传输至协同控制系统模块中的系统分析及记录模块,运动控制模块与所述的系统分析及记录模块相连接,并根据系统分析及记录模块中的采集运动轨迹参数进行相应的动作,并反馈运动状态。该系统及方法能够协同控制超声采集系统,大幅度提高超声检测的实施效率。

    一种传热管涡流检测差分通道信号对称性测量方法

    公开(公告)号:CN109975396A

    公开(公告)日:2019-07-05

    申请号:CN201711448195.6

    申请日:2017-12-27

    Abstract: 本发明属于核电站无损检测领域,具体为传热管涡流检测差分通道信号对称性测量方法,采集标定管涡流信号,设置通道差分通道,设置频率参照标定管检测频率,依据标定管结构,确定无缺陷位置中心点,之后进行对中性计算,确定探头的对称性百分比Ds,设置Ds合格值,据此检测探头对中是否合格,此方法能够有效的测量探头差分通道的一致性;在制作探头时,通过此方法改进制作方式与工艺,通过此测量方法,可以使内穿式自比差动式探头两线圈绕线合格率达100%。

    一种高转速条件下高精度自匹配外形尺寸测量方法

    公开(公告)号:CN109974637A

    公开(公告)日:2019-07-05

    申请号:CN201711445480.2

    申请日:2017-12-27

    Abstract: 本发明涉及无损检测技术领域,具体公开了一种高转速条件下高精度自匹配外形尺寸测量方法。该方法具体包括如下步骤:1、对被检管材采集数据进行标定;2、对采集的被检管材标定信号进行周期分析;2.1、进行信号预处理,滤除异常信号;2.2、计算获取采集数据周期的标志位;2.3、对两个探头采集数据的每个周期数据重采样;3、对两探头采集数据的周期数据进行同相位数据统计分析;4、对被检管材进行信号采集;5、计算获得被检管材的外形尺寸;本发明所述的一种高转速条件下高精度自匹配外形尺寸测量方法,其可以通过同相位角对比,最大程度地消除机械安装误差和采集系统误差的影响。

    一种蒸汽发生器传热管管板缝隙区涡流精准测量方法

    公开(公告)号:CN106932467A

    公开(公告)日:2017-07-07

    申请号:CN201511019152.7

    申请日:2015-12-30

    Abstract: 本发明属于涡流测量领域,具体涉及一种蒸汽发生器传热管管板缝隙区涡流精准测量方法。包括步骤一:设置涡流仪器的检测频率、步骤二:读入标定试验件检测数据、步骤三:读入一根传热管涡流检测数据、步骤四:对步骤三中确定的检测范围内的信号进行峰峰值测量或者最大水平分量测量以确定信号拐点、步骤五:管板区、起胀点位置的精确校准、步骤六:依据采样率、标定曲线以及步骤四所得的管板区、起胀点位置计算管板缝隙区尺寸、胀管平均内径、过胀点检测、欠胀点位置、步骤七:重复步骤三至步骤六,得到蒸汽发生器全部传热管的管板缝隙区尺寸、胀管平均内径、过胀点检测、欠胀点位置。

    一种热交换管本底噪声测量方法

    公开(公告)号:CN109974842B

    公开(公告)日:2021-04-13

    申请号:CN201711444915.1

    申请日:2017-12-27

    Abstract: 本发明一种热交换管本底噪声测量方法,采集标定涡流信号,并进行归一化,进行管端识别并确定测量范围,设置分段测量区间长度,进行单个区间本底噪声测量,分别计算测量窗口、测量区间内的最大噪声伏值与平均伏值,确定测量区间的最大性噪比与平均性噪比,完成整个热交换管的本底噪声测量。通过此方法能够有效的测量管材材料本身噪声;在制造时,通过此方法改进制作方式与工艺,通过此测量方法验证,可以使传热管满足本底噪声的合格率达100%;依据大量检测结果,形成管材是否合格的标准。

    一种超声波信号处理方法
    40.
    发明公开

    公开(公告)号:CN111442747A

    公开(公告)日:2020-07-24

    申请号:CN202010175175.1

    申请日:2020-03-13

    Abstract: 本发明涉及信号处理技术领域,具体公开了一种超声波信号处理方法。该方法具体包括:1、利用超声波对被检工件进行壁厚测量,采集并存储仅包含共振波的射频信号数组;2、创建逼近离散曲线;3、以逼近离散曲线为窗函数,与采集的射频信号数组数据进行卷积计算,获得新的曲线;4、获取新曲线的周期特征点的采样位置;5、采用线性回归算法获得精确的共振波频率。本发明所述的一种超声波信号处理方法能够在保证管壁厚测量精度的同时,极大缩短壁厚信号处理时间,提高系统工作效率。

Patent Agency Ranking