-
公开(公告)号:CN115980470B
公开(公告)日:2023-07-21
申请号:CN202310265573.6
申请日:2023-03-20
Applicant: 之江实验室
Abstract: 本发明公开了一种基于真空光镊的纳米微粒净电量快速标定方法。本发明方法利用交流电场驱动,测量悬浮纳米微粒位移功率谱密度,结合微粒质量等参数实现悬浮纳米微粒净电量快速标定和跟踪探测的方法。本发明解决了常见紫外照射、高压放电等净电量标定方法中改变纳米微粒现有净电量、随机性强的缺陷,通过测量光镊悬浮纳米微粒对驱动电场力的响应功率谱密度,并结合微粒标称尺寸准确快速标定其净电量,提高标定效率,并可维持现有净电量有助于实验连续性,实现纳米微粒净电量动态标定。
-
公开(公告)号:CN116027444B
公开(公告)日:2023-06-27
申请号:CN202310304234.4
申请日:2023-03-27
IPC: G01V7/00
Abstract: 本发明公开了一种基于静电调控的悬浮光力重力测量装置及方法。一种基于静电调控的悬浮光力重力测量方法,通过施加静电场控制处于势阱中的带电的微纳颗粒振动的平衡位置,进而使微纳颗粒的振动中心频率随静电场的变化达到最大值,判定微纳颗粒受到的静电力和自身重力达到平衡,然后根据微纳颗粒的质量、电荷量,和施加的静电场,得出重力加速度。一种基于静电调控的悬浮光力重力测量装置,包括微纳颗粒、电极、电荷源和支撑结构;所述的支撑结构用于支撑电极。本发明极大地降低了重力仪装置的复杂度,不易受空气分子影响,并不需要时序控制模块,还可拓展应用于其他静力的测量。
-
公开(公告)号:CN115980470A
公开(公告)日:2023-04-18
申请号:CN202310265573.6
申请日:2023-03-20
Applicant: 之江实验室
Abstract: 本发明公开了一种基于真空光镊的纳米微粒净电量快速标定方法。本发明方法利用交流电场驱动,测量悬浮纳米微粒位移功率谱密度,结合微粒质量等参数实现悬浮纳米微粒净电量快速标定和跟踪探测的方法。本发明解决了常见紫外照射、高压放电等净电量标定方法中改变纳米微粒现有净电量、随机性强的缺陷,通过测量光镊悬浮纳米微粒对驱动电场力的响应功率谱密度,并结合微粒标称尺寸准确快速标定其净电量,提高标定效率,并可维持现有净电量有助于实验连续性,实现纳米微粒净电量动态标定。
-
公开(公告)号:CN115498494A
公开(公告)日:2022-12-20
申请号:CN202211123526.X
申请日:2022-09-15
Applicant: 之江实验室
IPC: H01S3/13 , H01S5/068 , H01S5/0683
Abstract: 本发明公开了一种基于差分采样反馈的激光光功率稳定装置及其调试方法。本发明将待稳定激光的功率对应的电压信号与高精度参考电压源通过零漂移差分电路进行比较和差分采样,采样信号经过模拟比例电路反馈至光功率控制器,最终在数百Hz以下频段有效减小激光功率波动达20dB,并达到1小时内数百PPM量级的长期稳定性。本发明中通过差分采样移除了直流分量,避免了电路量程和分辨率性能之间的矛盾,大幅度提高了光功率信号相对电路噪声的信噪比和长期稳定效果。总之,本发明通过差分采样反馈,提供了一种长期稳定性优良且结构简单可靠的激光光功率稳定方法及装置。
-
公开(公告)号:CN114624153B
公开(公告)日:2022-10-21
申请号:CN202210525423.X
申请日:2022-05-16
IPC: G01N15/02
Abstract: 本发明公开了一种基于回音壁谐振模式测量光阱捕获微粒半径的方法及装置。所述的方法,1)利用光阱捕获并悬浮真空腔中的微粒;2)将锥形光纤的束腰部分靠近该微粒,利用倏逝场将入射光耦合进入捕获的微粒,调整入射光的波长,使微粒达到回音壁谐振模式;3)根据光学回音壁谐振模式的形成条件公式,计算得到谐振腔的半径r;4)根据透射光谱的模式劈裂,计算出微粒的偏心率Ɛ。所述的装置真空光镊装置的基础上,增加了可调谐激光器和锥形光纤,可以在不改变原有悬浮微粒的状态下形成回音壁谐振模式,实现了真空光阱悬浮颗粒半径的原位检测。本发明原位、无损、非接触式、高精度,简化了步骤,结果准确可靠。
-
公开(公告)号:CN114414552B
公开(公告)日:2022-08-09
申请号:CN202210310174.2
申请日:2022-03-28
IPC: G01N21/65 , G01N33/569 , G01N33/546 , G01N33/543
Abstract: 本发明公开一种微粒光散射谱分析装置及其应用方法。该装置通过双光束光镊系统形成捕获光阱实现对微粒的快速稳定捕获,利用在捕获光的垂轴方向放置散射光收集系统和光谱仪,实现光悬浮微粒侧向散射光的收集和利用。本发明还提供了一种利用该装置搭建的双光束光镊系统进行微粒光散射谱分析的方法,通过集成的光谱处理系统最大化利用收集的侧向散射光,精度和灵敏度与传统技术相比有很大提高。避免了分光引起的散射光浪费,可捕获微粒尺寸范围更大,且需要的捕获光强减弱,避免由于微粒吸热过多引起物性变化导致的测量错误,为微纳尺寸微粒的精密测量提供了方法与手段。
-
公开(公告)号:CN114414905A
公开(公告)日:2022-04-29
申请号:CN202210336005.6
申请日:2022-04-01
IPC: G01R29/12
Abstract: 本发明公开了一种基于悬浮微粒测量电场的方法及装置。本发明将悬浮的微纳颗粒带上一定数量的电荷,根据微粒在待测电场中的位移功率谱密度信号可得到微粒所受电场力,结合微粒所带电荷量即可计算出待测电场强度。本发明可以在不改变原有悬浮微粒的状态下实现电场探测,借助悬浮谐振子的高灵敏力学检测性能,可以在几赫兹至兆赫兹的宽频带范围内实现电场探测的高灵敏度。通过测量微粒在三个正交方向上的位移功率谱密度,可以实现微粒所处位置的矢量电场探测,由于悬浮微粒的尺寸很小,电场探测的空间分辨率可达百纳米级。因此,本发明通过悬浮微粒谐振子,提供了一种原位、无损、高探测灵敏度、高空间分辨率的测量矢量电场的方法和装置。
-
公开(公告)号:CN113848382A
公开(公告)日:2021-12-28
申请号:CN202111043115.5
申请日:2021-09-07
Abstract: 本发明公开了一种基于电场力激励的频率特性测试方法及光镊系统。方法步骤为:对光镊系统施加正弦电压,若微纳粒子运动,则微纳粒子带电;若微纳粒子不动,则用空气电离法使微纳粒子带电,带电的微纳粒子产生位移,获取输入幅度和输入相位;对带电微纳粒子施加不同频率的正弦电场,获取多个输出幅度和输出相位,计算多个归一化幅频响应值及相频响应值并绘制曲线,得出幅频响应特征和相频响应特征,进而测试出光镊系统的频率特性;光镊系统中的对射双光束通过两个聚焦透镜会聚形成光阱,光阱中心处稳定捕获一个微纳粒子。本发明由粒子移动产生光镊系统的频谱,用于光镊系统的整个工作频率范围内频率特性的精密测量。
-
公开(公告)号:CN112863728A
公开(公告)日:2021-05-28
申请号:CN202110453690.6
申请日:2021-04-26
Abstract: 本发明公开一种基于电场量标定的多维度光镊校准装置及方法,利用紧聚焦光阱的偏振依赖特性,提出通过一维的电场标定装置实现对微粒的三轴电场力标定。本发明的方法使得微粒电场力标定系统与微粒投送、微粒检测系统兼容;简化了装置的复杂度,减弱标定复杂度。
-
公开(公告)号:CN112509724A
公开(公告)日:2021-03-16
申请号:CN202110144829.9
申请日:2021-02-03
IPC: G21K1/00
Abstract: 本发明提出了一种光阱微粒的起支方法及装置。光阱微粒的起支方法,将样品微粒的悬浮液通过雾化器雾化成微小液滴;液滴通过导流管进入到光阱捕获区域;通过加热导流管使液滴中的溶剂挥发后残留样品微粒;在导流管上端的气流接口引入干燥气流,通过流速控制样品微粒从导流管下端出射的运动速度;导流管的下端出口收缩,其内径尺寸略大于光阱有效捕获区域的特征尺寸,小于微小液滴的特征尺寸,可使单个分散悬浮微粒通过而不让单个悬浮液滴通过。光阱微粒的起支装置,包括雾化器、导流管、气流装置、光阱。本发明可直接将微粒投送到光阱的有效捕获区域,提高光阱起支效率的同时,避免光阱捕获多个微粒的情况,解决杂质微粒污染光阱系统的问题。
-
-
-
-
-
-
-
-
-