-
公开(公告)号:CN116657283B
公开(公告)日:2025-05-16
申请号:CN202310380667.8
申请日:2023-04-11
Applicant: 北京化工大学
Abstract: 本发明公开了一种复合碳纤维及其制备方法,该方法包括:(1)提供喷头,所述喷头包括内通道和外通道,所述外通道环绕所述内通道的外围设置,将聚丙烯腈溶液通入所述外通道,将包括聚丙烯腈和中间相沥青的混合液通入所述内通道进行纺丝,得到芯层包括聚丙烯腈和中间相沥青,皮层包括聚丙烯腈的初生纤维;(2)将所述初生纤维依次进行沸水牵伸、水洗、上油、干燥致密化和蒸汽牵伸,得到具有皮芯结构的前驱体纤维;(3)将所述前驱体纤维依次进行预氧化、碳化和石墨化,得到复合碳纤维。采用该方法可以制备得到径向石墨化差异小的复合碳纤维,并且在较低石墨化温度下该复合碳纤维同时具有优异的拉伸强度和拉伸模量。
-
-
公开(公告)号:CN111254521B
公开(公告)日:2021-10-01
申请号:CN202010174019.3
申请日:2020-03-13
Applicant: 北京化工大学
IPC: D01F9/22 , D01F6/38 , C08F220/46 , C08F222/02 , C08F220/14 , D01D5/06 , D01D5/253
Abstract: 本发明涉及一种具有表面沟槽结构的大直径高强中模碳纤维及其制备方法。该纤维具有表面沟槽结构,平均直径在8.5μm~11μm,强度在4.9~6.0GPa,模量在270GPa~310GPa。采用湿法纺丝技术制备原丝,通过调控预氧化阶段各温区预氧化时间比,控制预氧纤维的皮芯比≥0.85,再经过低温碳化、高温碳化制得具有表面沟槽结构的大直径高强中模碳纤维。所制得的具有表面沟槽结构的大直径高强中模碳纤维不仅提升了纤维的准直性,也改善了复合材料制备中树脂的浸润性,最终提升了复合材料应用中的压缩强度等力学性能。
-
公开(公告)号:CN113322678A
公开(公告)日:2021-08-31
申请号:CN202110506529.0
申请日:2021-05-10
Applicant: 北京化工大学
IPC: D06M13/473 , D06M15/37 , D06M11/50 , D06M11/55 , D06M11/64 , D06M23/00 , D06M101/40
Abstract: 本发明公开了表面改性碳纤维及其改性方法,其中改性碳纤维的方法包括:(1)对碳纤维表面进行除胶;(2)将步骤(1)得到的除胶后碳纤维与氧化剂接触进行氧化反应,以便得到氧化碳纤维;(3)以所述氧化碳纤维作为阴极、以石墨为阳极、以含有咪唑类离子液体、有机溶剂、缩合剂和导电剂的混合溶液为电解液进行电化学反应,以便在碳纤维表面共价接枝咪唑类离子。采用该方法得到的表面接枝咪唑类离子的碳纤维的界面剪切强度相较未改性碳纤维大幅度提升,从而拓展了其在复合材料领域的应用。
-
公开(公告)号:CN112345478A
公开(公告)日:2021-02-09
申请号:CN202011086913.1
申请日:2020-10-12
Abstract: 本发明公开了测试聚丙烯腈原丝中残留二甲基亚砜含量的方法,包括:(1)将聚丙烯腈原丝与丙酮在30~50℃下混合振荡,以便使得所述聚丙烯腈原丝中的残留二甲基亚砜浸取进入丙酮中;(2)以丙酮为参比溶液,利用紫外分光光度计对步骤(1)中得到的含有二甲基亚砜的丙酮溶液进行测试,并计算所述聚丙烯腈原丝中残留二甲基亚砜的含量。该方法采用丙酮作为聚丙烯腈原丝中二甲基亚砜的提取剂,可以在较低温度下浸取原丝中的二甲基亚砜,避免了二甲基亚砜发生分解,而且丙酮比水对PAN纤维浸润性更好,提取效率更高,同时二甲基亚砜在丙酮中的紫外吸收更灵敏,相比现有提取和测试方法,本申请的方法测试结果更加准确,从而可以获得原丝中准确的二甲基亚砜残留溶剂含量信息。
-
公开(公告)号:CN109402791B
公开(公告)日:2021-02-05
申请号:CN201811102012.X
申请日:2018-09-20
Applicant: 北京化工大学
IPC: D01F9/22 , C08F220/46 , C08F222/02 , C08F220/14
Abstract: 本发明公开了具有规整表截面结构的高强高模碳纤维及其制备方法,方法包括:(1)将丙烯腈和衣康酸或丙烯腈和衣康酸与丙烯酸甲酯进行聚合,得到聚合物纺丝溶液;(2)将聚合物纺丝溶液依次进行凝固、蒸汽牵伸、水洗、上油、干燥、过热蒸汽牵伸和热定型,得到聚丙烯腈原丝;(3)将聚丙烯腈原丝进行预氧化、碳化和石墨化处理,得到碳纤维,其中,在步骤(2)中,凝固过程采用三级梯度凝固:第一凝固浴浓度为65~80wt%,温度为30~65摄氏度,凝固牵伸倍数为0.5~1.0倍,第二凝固浴浓度为35~50wt%,第三凝固浴浓度为5~10wt%。采用该方法可以得到具有圆形截面和定向排列的表面沟槽结构的高强高模碳纤维,该碳纤维的线密度225~235g/km(6K)、435~447g/km(12K),拉伸强度为4.4~5.0GPa,拉伸模量为350~400GPa,体密度1.77‑1.79g/cm3。
-
公开(公告)号:CN111945251A
公开(公告)日:2020-11-17
申请号:CN201910407963.6
申请日:2019-05-15
Applicant: 北京化工大学
IPC: D01F9/22 , D01F6/38 , C08F220/46 , C08F222/02 , C08F220/14
Abstract: 本发明公开了超高强度中等模量聚丙烯腈基碳纤维及其制备方法,方法包括:(1)将丙烯腈和衣康酸或丙烯腈和衣康酸与丙烯酸甲酯进行聚合;(2)将聚合物纺丝溶液依次进行凝固、蒸汽牵伸、水洗、上油、干燥、过热蒸汽牵伸和和热定型;(3)将所述聚丙烯腈原丝进行预氧化和碳化处理,得到超高强度及中等模量聚丙烯腈基碳纤维,其中,在步骤(2)中,所述凝固包括一级凝固、二级凝固和三级凝固,所述一级凝固的牵伸倍率为-0.5~3.0,所述二级凝固的牵伸倍率为1.0~2.0,所述三级凝固的牵伸倍率为1.2~3.0,在步骤(3)中,所述预氧化过程中,温度为200~280摄氏度,时间为10~30分钟。该方法在大大缩短预氧化处理时间的情况下制备得到超高强度中等模量的碳纤维。
-
公开(公告)号:CN111926410A
公开(公告)日:2020-11-13
申请号:CN202010857871.0
申请日:2020-08-24
Applicant: 北京化工大学
IPC: D01F8/08 , D01F8/02 , C08F220/46 , C08F222/02 , D01D5/06 , D01D1/02
Abstract: 本发明公开了纤维素纳米晶-聚丙烯腈复合纤维及其制备方法,其中,所述方法包括:(1)将纤维素纳米晶与丙烯腈单体在有机溶剂中反应,得到纤维素纳米晶-丙烯腈聚合物溶液;(2)将所述纤维素纳米晶-丙烯腈聚合物溶液进行过滤和脱泡,以便得到聚合物纺丝原液;(3)将所述聚合物纺丝原液经喷丝板挤出后进入含有二甲基亚砜、二甲基甲酰胺和二甲基乙酰胺至少之一的凝固浴中进行凝固成型,以便得到纤维素纳米晶-聚丙烯腈复合纤维。该方法通过将丙烯腈单体与纤维素纳米晶在有机溶剂中反应,在后续纺丝过程中纤维素纳米晶能够调控聚丙烯腈纤维的结晶结构,从而获得高结晶度的纤维素纳米晶-聚丙烯腈复合纤维。
-
公开(公告)号:CN109402792B
公开(公告)日:2020-11-03
申请号:CN201811290302.1
申请日:2018-10-31
Applicant: 北京化工大学
IPC: D01F9/22 , D01F6/38 , C08F220/44 , C08F222/02 , C08F220/14 , D21H13/50
Abstract: 本发明涉及一种低直径聚丙烯腈基碳纤维及其制备方法。以含衣康酸、甲基丙烯酸甲酯的丙烯腈为三元聚合体系,通过在聚合过程中添加有机二醇交联剂聚合得到聚合物含量在12.5%~17.5%,粘度为120~800泊的纺丝原液,交联剂的加入提高了低聚合物含量、低粘度纺丝液的可纺性和高倍牵伸性,然后采用湿法纺丝工艺,匹配合理的凝固条件和纺丝牵伸工艺,制备出低直径的具有表面沟槽的聚丙烯腈原丝,原丝经预氧化、低温碳化和高温碳化得到单丝当量直径在2~3μm,拉伸强度≥3.5GPa,拉伸模量≥230Gpa,具有规整表面沟槽结构的低直径高强度聚丙烯腈基碳纤维。本发明得到的碳纤维能够提高燃料电池用碳纤维纸的柔韧性。
-
公开(公告)号:CN110331470B
公开(公告)日:2020-09-11
申请号:CN201910731644.0
申请日:2019-08-08
Applicant: 北京化工大学 , 威海拓展纤维有限公司
IPC: D01F9/22 , C08F220/46 , C08F222/02 , C08F220/14 , D01D5/12
Abstract: 本发明公开了一种带形聚丙烯腈碳纤维及其制备方法,其中,制备方法包括:(1)将丙烯腈单体和衣康酸、丙烯酸甲酯与溶剂进行共聚合,以便得到聚合物纺丝溶液;(2)将所述聚合物纺丝溶液经过带形喷丝孔的喷丝板喷丝后经凝固浴凝固牵伸成型为带形聚丙烯腈初生纤维,所述带形聚丙烯腈初生纤维经一次牵伸、水洗、上油干燥致密化、二次牵伸、热定型后制得带形聚丙烯腈原丝;(3)将所述带形聚丙烯腈原丝经预氧化、低温碳化和高温碳化,以便得到带型聚丙烯腈碳纤维。相比于传统圆形截面碳纤维,采用本发明得到的带形聚丙烯腈碳纤维长轴可达22.3~24.2微米,短轴5.1~5.4微米,纤度可达0.154~0.174tex,单丝拉伸强度不低于5.4GPa、拉伸模量可达294GPa。
-
-
-
-
-
-
-
-
-