-
公开(公告)号:CN114325811B
公开(公告)日:2024-06-21
申请号:CN202210020649.4
申请日:2022-01-10
Applicant: 北京大学
Abstract: 本发明提供一种行星际能量粒子探头、探测系统及探测方法,行星际能量粒子探头包括两套望远镜系统,望远镜系统包括两个望远镜单元,每一个望远镜单元均具有开口的第一端及第二端。望远镜单元的第二端设置有磁偏转系统,磁偏转系统包括环形磁铁,一套望远镜系统中的两个所述望远镜单元中的所述环形磁铁以所述环形磁铁的中心轴平行的方式设置,在所述环形磁铁的中心轴延伸方向上,两个所述环形磁铁产生的磁场方向相反。该磁偏转系统能够很好地偏转能量低于400keV的电子,满足望远镜单元的第二端偏转能量低于400keV的设计要求。从而在望远镜单元的两端分别探测不同能量的中高能电子、质子以及中高能离子。
-
公开(公告)号:CN113625332B
公开(公告)日:2024-02-20
申请号:CN202110895229.6
申请日:2021-08-05
Applicant: 北京大学
Abstract: 本发明提供一种行星际能量粒子谱仪探测器,包括一圆形硅半导体探测器:圆形硅半导体探测器包括位于中央的圆形区域、位于所述圆形区域四周且均匀分布的四个扇形区域;所述圆形区域和所述四个扇形区域构成不同的像素。本发明的行星际能量粒子谱仪探测器采用多像素的设计方案,有效提高了行星际能量粒子探测的角度分辨率。
-
公开(公告)号:CN116359972A
公开(公告)日:2023-06-30
申请号:CN202310356941.8
申请日:2023-04-04
Applicant: 北京大学
Abstract: 本发明实施例提供了一种粒子辐射探测装置,包括:探测模块和读出模块,其中,所述探测模块,适于对粒子辐射进行探测,并转化为初始电信号;所述读出模块,与所述探测模块耦接,适于基于所述初始电信号,输出探测信号;所述探测模块和所述读出模块之间的耦合方式基于所述探测模块的尺寸确定,以使所述探测信号的噪声小于预设噪声阈值。采用上述技术方案,可以降低探测信号的噪声。
-
公开(公告)号:CN115542374A
公开(公告)日:2022-12-30
申请号:CN202211161586.0
申请日:2022-09-23
Applicant: 北京大学
Abstract: 本发明提供一种空间电子探测器,包括外壳、准直仪及探测器,准直仪为圆环结构,两层或三层准直仪同轴排布于外壳中,电子穿过准直仪后到达探测器,且越靠近探测器,准直仪的内径越小,另外,准直仪上表面的内径大于其下表面的内径。本发明通过对准直仪的结构、尺寸进行特殊设计,使其满足粒子谱仪大张角大几何因子需要,从而改善探测器内的电子散射,提高仪器的测量精度。
-
公开(公告)号:CN113514789A
公开(公告)日:2021-10-19
申请号:CN202110463248.1
申请日:2021-04-23
Applicant: 北京大学
IPC: G01R35/00
Abstract: 本发明提供一种磁传感器阵列校准方法,该方法通过构建磁传感器阵列的正交坐标系,确定磁传感器测量的磁场的输出值与标准磁场的实际值之间的函数关系,并根据记录的磁传感器的输出值获得磁传感器的转换系数。本发明提供了一种磁传感器阵列的准确校准方法,能够提高磁传感器阵列的校准精确度。另外,本发明还可以采用椭球拟合的方法获得所述磁传感器的每一个传感器轴对应的比例因子,并根据该比例因子以及转换系数与磁传感器的角度偏差之间的函数关系,进一步获得磁传感器的角度偏差。
-
公开(公告)号:CN113489313A
公开(公告)日:2021-10-08
申请号:CN202110690049.4
申请日:2021-06-22
Applicant: 北京大学
Abstract: 本发明提供一种增大电压调节范围的电路,包括第一电源的正极与第一光电耦合器的一端相连,第一光电耦合器的另一端与第一电阻的第一端相连,第一电阻的第二端与第三电阻的第一端相连,第三电阻的第二端与第一电源的负极相连;第二电源的正极与第二光电耦合器的一端相连,第二光电耦合器的另一端与第三电阻的第二端相连,第三电阻的第一端与第二电阻的第一端相连,第二电阻的第二端与第二电源的负极相连;负载电阻一端与第一电阻的第一端相连,另一端与第二电阻的第二端相连,第一电阻的第一端为输出电压的输出端,输出电压的采样端位于所述负载电阻的两端之间。本发明的增大电压调节范围的电路能够增大输出电压上限,且调节速度快和纹波水平低。
-
公开(公告)号:CN110308476B
公开(公告)日:2021-01-08
申请号:CN201910698054.2
申请日:2019-07-31
Applicant: 北京大学
IPC: G01T1/36
Abstract: 本发明提供一种粒子辐射探测方法及探测装置,该方法包括对放大器产生的与粒子沉积能量对应的电脉冲信号进行脉冲宽度甄别,并输出与电脉冲信号幅度相对应的逻辑信号。本发明通过建立脉冲幅度与脉冲宽度之间的关系,以脉冲宽度分析方法获得脉冲幅度值,根据脉冲幅度值的甄别和计数实现粒子能谱通量的测量。脉冲宽度分析解决了脉冲峰值电压与甄别器电压上限之间的矛盾,不会因电压上限限制影响脉冲从宽度到幅度的分析结果,因此能够实现超过甄别器电压上限的粒子能谱探测,提高探测的能谱范围。脉冲宽度分析采用数字电路完成,无需对脉冲峰值进行识别及保持,也无需脉冲幅度的模数转换,简化电路设计,更加适合低电压工作,并提高探测的准确度。
-
公开(公告)号:CN109738933B
公开(公告)日:2020-09-01
申请号:CN201910030877.8
申请日:2019-01-14
Applicant: 北京大学
Abstract: 本发明提供一种中性原子降噪方法及降噪装置,该方法包括如下步骤:提供一准直偏转腔室,准直偏转腔室包括相对设置的两准直偏转板,所述准直偏转板具有一长度L,所述两偏转板之间具有间隔距离d;向所述准直偏转板提供偏转电压U;所述偏转准直腔室接收入射的夹杂带电粒子的中性原子,并对所述带电粒子进行偏转;其中,所述带电粒子的能量EK与所述偏转板的长度L、所述两准直偏转板之间的间隔距离d之间的关系如下:本申请的上述方法及装置,通过准直偏转板的长度与电压配合,选取适当的偏转电压和准直偏转腔室高度,实现对带电粒子的有效偏转,降低中性原子的噪声。从而使得探测器探测到纯净的中性原子并且获得良好的中性原子成像效果。
-
公开(公告)号:CN110308476A
公开(公告)日:2019-10-08
申请号:CN201910698054.2
申请日:2019-07-31
Applicant: 北京大学
IPC: G01T1/36
Abstract: 本发明提供一种粒子辐射探测方法及探测装置,该方法包括对放大器产生的与粒子沉积能量对应的电脉冲信号进行脉冲宽度甄别,并输出与电脉冲信号幅度相对应的逻辑信号。本发明通过建立脉冲幅度与脉冲宽度之间的关系,以脉冲宽度分析方法获得脉冲幅度值,根据脉冲幅度值的甄别和计数实现粒子能谱通量的测量。脉冲宽度分析解决了脉冲峰值电压与甄别器电压上限之间的矛盾,不会因电压上限限制影响脉冲从宽度到幅度的分析结果,因此能够实现超过甄别器电压上限的粒子能谱探测,提高探测的能谱范围。脉冲宽度分析采用数字电路完成,无需对脉冲峰值进行识别及保持,也无需脉冲幅度的模数转换,简化电路设计,更加适合低电压工作,并提高探测的准确度。
-
公开(公告)号:CN112051602B
公开(公告)日:2024-03-29
申请号:CN202011018464.7
申请日:2020-09-24
Applicant: 北京大学
IPC: G01T3/08
Abstract: 本发明提供一种中性原子成像单元、成像仪、成像方法及空间探测系统,成像单元包括至少一组探测单元,至少一组探测单元包括:至少一个半导体探测器线阵列,每一个半导体探测器线阵列均包括由多个半导体探测器组成的半导体探测器条带;以及至少一个调制栅格。调制栅格包括狭缝以及形成狭缝的栅格实条,调制栅格包括多个栅格周期,每个栅格周期均包括n条狭缝,半导体探测器条带的宽度为d,调制栅格的第i个狭缝的宽度wi满足如下关系:#imgabs0#采用栅格成像技术对中性原子进行成像,栅格的狭缝和栅格实条宽度可调,由此可以大大提高中性原子的成像效率,缩短成像所需的时间,提高中性原子成像探测的计数率。
-
-
-
-
-
-
-
-
-