-
公开(公告)号:CN117683054A
公开(公告)日:2024-03-12
申请号:CN202311576504.3
申请日:2023-11-24
Applicant: 吉林大学
Abstract: 本发明适用于发光材料技术领域,提供了一种高效稳定的镧系分子团簇发光材料的制备方法,包括以下步骤:配制甲醇和乙腈的混合溶液;将Ln(NO3)3·6H2O与同等摩尔量的6‑氯‑2‑甲基吡啶一同加入到甲醇和乙腈混合溶液中,等待固体完全溶解;加入同等摩尔量的三乙胺;磁力搅拌、反应、过滤;将过滤后的澄清溶液静置,石英玻璃瓶壁析出块状晶体;清洗单晶得到纯净的分子团簇发光材料。本发明还提供了一种高效稳定的镧系分子团簇发光材料。本发明操作简单,耗能低,不需要高温高压等严苛的合成环境,制备得到由外层可调谐的多齿有机配体作为发射天线包裹着内层多核无机金属发光中心的镧系分子团簇发光材料。
-
公开(公告)号:CN106590635B
公开(公告)日:2019-03-26
申请号:CN201611112109.X
申请日:2016-12-07
Applicant: 吉林大学
Abstract: 黄光或红光铜簇组装体荧光材料、制备方法及其在制备纯铜簇白光LED器件中的应用,属于白光LED照明技术领域。本发明使用胶体溶液一锅法,利用高沸点溶剂,芳香族及脂肪族巯基包覆配体,通过简单的加热处理,得到稳定的由铜簇组装而成的发射黄光或红光的二维条带组装体荧光材料,通过简单的调控配体结构即可达到对荧光发射峰位置的调控。该组装体荧光材料制备方法简单、快速、可大量生产,原料成本低廉、工艺无污染,且得到的材料亮度以及稳定性都得到提高,并且在预混白光时无荧光淬灭或能量转移现象发生,因此该组装体荧光材料可以应用于高显色指数的白光LED照明领域。
-
公开(公告)号:CN105602554B
公开(公告)日:2018-01-05
申请号:CN201610132562.0
申请日:2016-03-09
Applicant: 吉林大学
Abstract: 一种金掺杂的铜纳米簇自组装荧光材料、制备方法及其在LED封装中的应用,属于LED封装材料技术领域。该自组装荧光材料是通过铜纳米簇自组装而成,又在其中掺入了金元素(金元素占总金属元素摩尔比的0.003%~80%),通过掺杂得到了荧光颜色连续可调的荧光粉。由于该自组装荧光材料制备方法简单、快速,原料成本低廉,工艺无污染,荧光颜色可调且量子产率高,稳定性好,同时,该荧光材料尺寸较大,混合后不易发生能量转移,因此该自组装荧光材料可以应用于高显色性白光LED的制备等领域。
-
公开(公告)号:CN104592972B
公开(公告)日:2016-05-11
申请号:CN201510096147.X
申请日:2015-03-04
Applicant: 吉林大学
Abstract: 一种通过共组装技术制备纳米粒子双模式荧光探针的方法,属于纳米荧光探针制备技术领域。首先对油相上转换纳米粒子除去多余配体,并对水相下转换纳米粒子进行补加巯基羧酸镉络合物处理;将油相上转换纳米粒子和水相下转换纳米粒子水溶液按一定比例混合,然后通过连续的避光搅拌处理,利用水溶性下转换纳米粒子对油溶性上转换纳米粒子的吸附,实现两种纳米粒子的共组装。组装会带来两个结果,一是上转换纳米粒子从油相转移到水相,二是形成双模式荧光探针。本发明整个操作过程简单、危险性小、双模式荧光探针产率高、并且具有良好的实验重复性。
-
公开(公告)号:CN104592972A
公开(公告)日:2015-05-06
申请号:CN201510096147.X
申请日:2015-03-04
Applicant: 吉林大学
Abstract: 一种通过共组装技术制备纳米粒子双模式荧光探针的方法,属于纳米荧光探针制备技术领域。首先对油相上转换纳米粒子除去多余配体,并对水相下转换纳米粒子进行补加巯基羧酸镉络合物处理;将油相上转换纳米粒子和水相下转换纳米粒子水溶液按一定比例混合,然后通过连续的避光搅拌处理,利用水溶性下转换纳米粒子对油溶性上转换纳米粒子的吸附,实现两种纳米粒子的共组装。组装会带来两个结果,一是上转换纳米粒子从油相转移到水相,二是形成双模式荧光探针。本发明整个操作过程简单、危险性小、双模式荧光探针产率高、并且具有良好的实验重复性。
-
公开(公告)号:CN103341638B
公开(公告)日:2015-03-04
申请号:CN201310288514.7
申请日:2013-07-10
Applicant: 吉林大学
Abstract: 一种在两种高沸点溶剂中组装金属纳米簇成为片层结构或类双锥体结构的方法,属于金属纳米簇组装技术领域。即将事先制备好的烷基硫醇配体稳定的金属纳米簇放置在两种高沸点溶剂中,通过简单的加热处理实现对于二维片层结构或类双锥体结构的组装。这种组装方法,在微观领域中,对于组装技术的发展和小尺寸纳米簇界面的研究具有很大的价值。本发明在组装的过程中操作简便,危险性小,并且具有良好的实验重复性。
-
-
-
-
-