一种多元陶瓷基复合材料及其制备方法

    公开(公告)号:CN116063104B

    公开(公告)日:2023-06-09

    申请号:CN202310354173.2

    申请日:2023-04-06

    Applicant: 中南大学

    Abstract: 本发明公开了一种多元陶瓷基复合材料及其制备方法,所述其制备方法为于C/C复合材料表面依次铺设熔渗粉料A、熔渗粉料B,然后熔渗处理,即得多元陶瓷基复合材料,所述熔渗粉料A由V粉与Si粉组成,所述熔渗粉料B由难熔金属粉M、V粉、Si粉组成,所述难熔金属粉M选自Hf粉,Zr粉,Ta粉中的至少一种;所制备的多元陶瓷基复合材料为超高温陶瓷组分与高温陶瓷互相匹配、各物相均匀分布、晶粒尺寸较小、且呈弥散分布的超高温陶瓷基复合材料。

    一种SiC与碳氮化物互穿抗烧蚀涂层及其制备方法

    公开(公告)号:CN115353414B

    公开(公告)日:2023-05-26

    申请号:CN202210912167.X

    申请日:2022-07-29

    Applicant: 中南大学

    Abstract: 本发明公开了一种SiC与碳氮化物互穿抗烧蚀涂层及其制备方法,所述互穿抗烧蚀涂层设置于碳材料表面,所述互穿抗烧蚀涂层由SiC相与碳氮化物相组成,所述SiC相与碳氮化物相呈网络互穿结构。所述互穿抗烧蚀涂层通过先原位生成多孔SiC涂层,再通过高流动性熔盐包裹金属氮化物运输至多孔SiC孔中经过沉积碳扩散,形成与SiC互穿的碳氮化物。本发明所提供的互穿抗烧蚀涂层具有低热膨胀、高熔点、高强度的综合特点。本发明可在远低于Si、Hf熔点的温度制备抗烧蚀碳氮化物互穿界面涂层,工艺简单高效。

    一种耐烧蚀隔热一体化复合材料及其制备方法

    公开(公告)号:CN115536415B

    公开(公告)日:2023-03-10

    申请号:CN202211528394.9

    申请日:2022-12-01

    Applicant: 中南大学

    Abstract: 本发明公开了一种耐烧蚀隔热一体化复合材料及其制备方法。该复合材料两端分别为耐烧蚀段和隔热段,中间为过渡段;所述耐烧蚀段由超高温陶瓷基体与高增密碳纤维编织体复合而成;所述隔热段由复合磷酸盐基体与石英纤维编织体复合而成;所述过渡段由超高温陶瓷和复合磷酸盐复合基体与低密度碳纤维编织体复合而成。该复合材料具有梯度密度结构,形成了防热、隔热的有机整体,具有更可靠的机械稳定性及安全性,同时兼具优异的耐热、隔热及承载性能,且制备方法简单,成本低廉,适合工业规模化生产。

    一种包裹碳纤维的SiC-HfC-Al2O3多层界面涂层的制备方法

    公开(公告)号:CN114988888B

    公开(公告)日:2022-12-13

    申请号:CN202210929564.8

    申请日:2022-08-04

    Applicant: 中南大学

    Abstract: 本发明公开了一种包裹碳纤维的SiC‑HfC‑Al2O3多层界面涂层的制备方法,所述多层界面涂层,从内至外,由SiC层、HfC层、Al2O3层组成。所述制备方法为:将含PyC层的碳纤维包埋于熔盐粉料A中,然后于保护气氛下进行第一次反应,冷却即得含SiC涂层的碳纤维;再将含SiC涂层的碳纤维包埋于熔盐粉料B中,然后于保护气氛下进行第二次反应、冷却,即得包裹碳纤维的SiC‑HfC‑Al2O3多层界面涂层;本发明能在低于Si、Hf、Al2O3熔点的温度制备抗烧蚀SiC‑HfC‑Al2O3多层界面涂层,工艺简单高效。

    一种耐烧蚀三维镶嵌陶瓷涂层及其制备方法

    公开(公告)号:CN114908322B

    公开(公告)日:2022-09-30

    申请号:CN202210838524.2

    申请日:2022-07-18

    Applicant: 中南大学

    Abstract: 本发明公开了一种耐烧蚀三维镶嵌陶瓷涂层及其制备方法,所述制备方法为在碳材料中设置内凹结构,然后将梯度高导热陶瓷内嵌体,置于内凹结构内中,获得含梯度高导热陶瓷内嵌体的碳材料,再将含梯度高导热陶瓷内嵌体的碳材料置于含硅粉的模具中,通过热蒸镀于梯度高导热陶瓷内嵌体与碳材料内凹结构的表面形成SiC过渡层,最后再于含梯度高导热陶瓷内嵌体的碳材料的表面设置超高温陶瓷涂层,即得耐烧蚀三维镶嵌陶瓷涂层;本发明通过在碳材料中设置梯度结构的高导热陶瓷内嵌体,然后依次进行SiC过渡层以及超高温陶瓷涂层,形成耐烧蚀三维镶嵌陶瓷涂层,在三者的协同作用下,不仅使涂层与基体结合为一体,而且能大幅提升碳材料的抗烧蚀性能。

    一种耐烧蚀三维镶嵌陶瓷涂层及其制备方法

    公开(公告)号:CN114908322A

    公开(公告)日:2022-08-16

    申请号:CN202210838524.2

    申请日:2022-07-18

    Applicant: 中南大学

    Abstract: 本发明公开了一种耐烧蚀三维镶嵌陶瓷涂层及其制备方法,所述制备方法为在碳材料中设置内凹结构,然后将梯度高导热陶瓷内嵌体,置于内凹结构内中,获得含梯度高导热陶瓷内嵌体的碳材料,再将含梯度高导热陶瓷内嵌体的碳材料置于含硅粉的模具中,通过热蒸镀于梯度高导热陶瓷内嵌体与碳材料内凹结构的表面形成SiC过渡层,最后再于含梯度高导热陶瓷内嵌体的碳材料的表面设置超高温陶瓷涂层,即得耐烧蚀三维镶嵌陶瓷涂层;本发明通过在碳材料中设置梯度结构的高导热陶瓷内嵌体,然后依次进行SiC过渡层以及超高温陶瓷涂层,形成耐烧蚀三维镶嵌陶瓷涂层,在三者的协同作用下,不仅使涂层与基体结合为一体,而且能大幅提升碳材料的抗烧蚀性能。

    一种抗渣蚀钢包浇注料及其制备方法

    公开(公告)号:CN114873996A

    公开(公告)日:2022-08-09

    申请号:CN202210811911.7

    申请日:2022-07-12

    Applicant: 中南大学

    Abstract: 本发明公开了一种抗渣蚀钢包浇注料及其制备方法,所述抗渣蚀钢包浇注料由浇注料基体以及包覆于浇注料表面的Al2O3‑Cr2O3‑TiO2复合涂层组成:其中浇注料基体采用三级粒度级配的板状刚玉颗粒为骨料,采用两种粒度的板状刚玉细粉为基质,采用α‑Al2O3‑碱式碳酸锆复合微粉为粘结剂,形成α‑Al2O3‑碱式碳酸锆复合微粉增强钢包浇注料。在其表面设置Al2O3‑Cr2O3‑TiO2体系复合涂层,通过本发明中浇注料基体以及Al2O3‑Cr2O3‑TiO2复合涂层的协同作用下,可以使抗渣蚀钢包浇注料具有优异的力学性能和抗渣侵蚀性能。

    一种轴向梯度和平面均质的超高温陶瓷基复合材料的制备方法

    公开(公告)号:CN114380613B

    公开(公告)日:2022-06-21

    申请号:CN202210284995.3

    申请日:2022-03-23

    Applicant: 中南大学

    Abstract: 本发明公开了一种轴向梯度和平面均质的超高温陶瓷基复合材料的制备方法,通过轴向梯度碳纤维预制体编织和梯度低熔点合金丝点阵植入相结合的方法,使碳相呈轴向梯度变化,陶瓷相在梯度C/C基体内部呈连续成分梯度分布和平面点阵均质分布的形态,本发明方法实现了轴向上,近烧蚀端的强陶瓷相界面设计,以及近烧蚀端向远烧蚀端方向,超高温陶瓷相含量依次递减,而碳相依次递增的物相分布调控;平面方向上,各陶瓷相均匀分布,最终形成了一种满足材料性能要求的轴向上不同陶瓷相、碳相成分和含量呈梯度变化,平面上陶瓷相均匀分布的梯度陶瓷基复合材料。

    一种可规模化制备HfO2-ThO2超高温氧化物复相陶瓷的方法

    公开(公告)号:CN113943156A

    公开(公告)日:2022-01-18

    申请号:CN202111561456.1

    申请日:2021-12-20

    Applicant: 中南大学

    Abstract: 本发明公开一种可规模化制备HfO2‑ThO2超高温氧化物复相陶瓷的方法,包括如下步骤:将HfO2粉、ThO2粉、烧结助剂混合,获得混合粉,造粒获得粉料,将粉料进行模压成型,获得复相陶瓷生坯,再于氧化气氛下烧结即得HfO2‑ThO2超高温复相陶瓷;所述模压成型采用二次保压;本发明首创的提供了一种在常压下将HfO2‑ThO2超高温氧化物复相陶瓷烧结致密的方法,发明人发现,在有烧结助剂的情况下,通过压制过程中采用二次保压获得的生坯,通过在氧化气氛下烧结即能够获得致密的HfO2‑ThO2超高温氧化物复相陶瓷。本发明的制备方法,由于在常压下进行烧结,无需特殊的设备,因此可以实现低成本、大规模的生产。

    一种常压低温固化的镧铝系磷酸盐复合材料及其制备方法、应用

    公开(公告)号:CN113292350B

    公开(公告)日:2021-10-08

    申请号:CN202110847303.7

    申请日:2021-07-27

    Applicant: 中南大学

    Abstract: 本发明提供了一种镧铝系磷酸盐复合材料,包括磷酸镧和与所述磷酸镧复合的磷酸铝。该复合材料,具有特定的物相组成和微观结构,磷酸镧和磷酸铝相互掺杂复合并通过离子键键合,从而得到了能够在低温下便能快速固化成型,高温下性能优异的镧铝系磷酸盐复合材料。本发明提供的磷酸盐复合材料在常压低温下即可固化成型,所以制品成型不需要特殊设备进行特殊高温烧结就可以供使用,此成型过程省去复杂的高温烧结,节约能源。而且复合材料的耐高温性能优异,同时抗烧蚀性能良好,在烧蚀温度2000℃下,烧蚀后样品表面较完整,并未见熔融情况,同时制备工艺简单、制备周期短。

Patent Agency Ranking