-
公开(公告)号:CN115622275B
公开(公告)日:2023-03-28
申请号:CN202211588512.5
申请日:2022-12-12
Applicant: 之江实验室
Abstract: 本发明公开了一种基于无线能量传输的胶囊内窥镜及成像方法,涉及内窥胶囊领域,包括聚焦超声换能器、柔性无线能量接收装置和成像组件,所述聚焦超声换能器与柔性无线能量接收装置的中心频率相同;所述多个柔性无线能量接收装置通过环氧树脂胶离散地粘贴在胶囊内窥镜的内壁上;所述成像组件包含4个分立部件,每个部件包含16个成像振元。本发明利用体外超声波激励装置诱导能量传输实现胶囊内窥镜的超声能量收集,实现了对电刺激能量的控制;所述成像组件通过发收超声信号实现成像目的,实现简单,具有便携性、生物相容性和可重复应用的特点,有助于拓展压电材料的应用领域。
-
公开(公告)号:CN114865949B
公开(公告)日:2023-03-24
申请号:CN202210589512.0
申请日:2022-05-26
Applicant: 之江实验室
Abstract: 本发明公开了一种微型平板压电电机及设计方法,涉及压电电机领域,所述微型平板压电电机包括:定子,所述定子包括金属基体和若干压电陶瓷片,所述压电陶瓷片对称设置在所述金属基体上;转子,所述转子安装在所述金属基体内;驱动件,所述驱动件设置在所述定子的内壁和所述转子之间,所述转子带动所述驱动件沿所述金属基体的轴线螺旋移动;支撑架,所述支撑架用于固定所述金属基体并对所述金属基体施加压力。本发明所提出的微型平板压电电机及方法,使得电机的尺寸更小,电机的输出性能更大,性能的可调范围更宽,特别适合于内窥镜、内窥胶囊和微量注射泵等需要微型化驱动器实现精密控制的医疗仪器领域。
-
公开(公告)号:CN115177217B
公开(公告)日:2023-01-03
申请号:CN202211100325.8
申请日:2022-09-09
Applicant: 之江实验室
IPC: A61B5/00
Abstract: 本发明提出了一种基于球形粒子光脉冲激发效应的光声信号仿真方法、装置,所述方法包括:设定包括采样频率、采样时间和光声信号传输速度;设置光声断层成像探测阵列,并计算各阵元的位置坐标;将待测体模分解为多个球形粒子;设定阵元序号循环数;计算光声断层成像探测阵列单个阵元接收到的光声信号,将每个阵元得到的光声信号进行拼接得到光声信号矩阵。本发明方法将待检测体模分解为多个球形粒子,根据光声成像原理,直接考虑待测体模发出的所有光声信号经一定距离传播后在光声断层成像探测阵列单个阵元上的叠加效果,计算得出光声断层成像探测阵列各阵元接收到的上述粒子构成的体模受激光激发所产生的光声信号。
-
公开(公告)号:CN115024739B
公开(公告)日:2022-11-29
申请号:CN202210962407.7
申请日:2022-08-11
Applicant: 之江实验室
Abstract: 本发明公开了一种生物体内格留乃森参数分布的测量方法、应用,所述方法具体为:将X射线穿过生物体后的通量分布作为投影数据;投影数据滤波后通过反投影得到生物体的吸收系数分布;采集X射线激发的超声信号,得到初始声压分布;基于X射线光子数、辐射面积和吸收系数分布计算得到光通量分布,或当入射X射线为平行束时,根据光通量分布初值和吸收系数分布迭代求光通量分布;计算初始声压分布与吸收系数分布和光通量分布的比值得到格留乃森参数分布。本发明方法结合X射线断层成像和X光声断层成像得到格留乃森参数分布为生物医学分析提供客观依据。
-
公开(公告)号:CN115290601A
公开(公告)日:2022-11-04
申请号:CN202211226822.2
申请日:2022-10-09
Applicant: 之江实验室
Abstract: 本发明公开了一种宽谱非相干光散斑自相关成像探测的低冗余模拟方法。包括以下步骤:设置系统参数;选择物面中心点作为标定目标点;生成单一波长下的点扩展函数;将宽谱光源离散成多个单色波长;选出点扩展函数间相关性较小的波长作为模拟中的有效波长;生成各个有效波长对应的物体光场非相干传播到探测面所产生的光强分布;将各个光强分布按照一定比例加权平均得到物体在宽谱照明下在探测面产生的光强分布。本发明可以极大地降低模拟中的冗余,减小计算量,提高模拟效率;可以应用在非相干光的散射成像模拟实验中,为实际应用提供参考,在水下探测,透雾成像等方面都有很大应用前景。
-
公开(公告)号:CN114636672B
公开(公告)日:2022-09-06
申请号:CN202210506236.7
申请日:2022-05-11
Applicant: 之江实验室
Abstract: 本发明公开了一种光声超声复用的采集系统及方法,包括与超声换能器连接的光声接收模块,所述光声接收模块的输入和输出端口并联有超声收发模块,所述光声接收模块的输出端口连接有通道复用模块,所述通道复用模块的输出端口连接有信号采集模块,所述信号采集模块连接有触发模块,并联的所述光声接收模块与所述超声收发模块在同一时刻仅一个模块处于工作状态,本发明采用了光声接收模块与超声收发模块并联的技术方法,在不同工作模式下使能对应模块,以实现资源的充分调配;本发明中所述光声接收模块针对光声信号微弱的特征进行了前置低噪放大处理,提高了采集信噪比,从而改善了光声成像时的图像质量。
-
公开(公告)号:CN114563479B
公开(公告)日:2022-08-30
申请号:CN202210413457.X
申请日:2022-04-20
Applicant: 之江实验室
IPC: G01N29/06 , G01N29/24 , G01N21/17 , A61B5/00 , A61B5/0507
Abstract: 本发明公开了一种实时三维高分辨太赫兹光声成像方法和装置。所述的太赫兹光声成像方法使用太赫兹光源对待测对象进行照射,待测对象由于不同组织对光的特异性吸收,进而由于热膨胀激发出包含待测对象的特异性信息的声波,而后通过对声波信号进行探测、采集,通过对采集的数据进行计算重建得到待测对象高分辨率的实时的三维的图像。同时可通过优化超声换能器的中心频率和带宽提高成像分辨率,也可通过优化阵列式换能器的阵元材料、形状、尺寸、数量、密度、空间排布方式提高成像分辨率。突破了传统太赫兹成像的光学衍射极限对成像分辨率的限制,实现真正的太赫兹波的高分辨的实时三维成像。旨在应用于烧伤诊断、创面修复过程进行监控。
-
公开(公告)号:CN114886389A
公开(公告)日:2022-08-12
申请号:CN202210824984.X
申请日:2022-07-14
Applicant: 之江实验室
Abstract: 本发明公开一种三维光声/超声双模内窥镜及成像方法,涉及光声/超声内窥镜领域,包括透明硬质套管、光声信号激发组件、超声信号采集组件、探测扫描组件、图像重建及显示组件,所述探测扫描组件包括压电振子、转接件以及成像窗口;所述超声信号采集组件包括中空聚焦超声换能器及超声耦合介质;所述压电振子与所述超声换能器通过转接件连接,所述压电振子在外加电压作用下带动转接件和超声换能器螺旋旋转的方式实现三维图像获取。本发明提出的三维光声/超声双模内窥镜及成像方法,通过压电振子和超声换能器的集成化设计实现三维图像获取,有助于提高光声/超声双模内窥镜的成像速度、空间分辨率和探头寿命,特别适合于高端内窥成像设备。
-
公开(公告)号:CN114563479A
公开(公告)日:2022-05-31
申请号:CN202210413457.X
申请日:2022-04-20
Applicant: 之江实验室
IPC: G01N29/06 , G01N29/24 , G01N21/17 , A61B5/00 , A61B5/0507
Abstract: 本发明公开了一种实时三维高分辨太赫兹光声成像方法和装置。所述的太赫兹光声成像方法使用太赫兹光源对待测对象进行照射,待测对象由于不同组织对光的特异性吸收,进而由于热膨胀激发出包含待测对象的特异性信息的声波,而后通过对声波信号进行探测、采集,通过对采集的数据进行计算重建得到待测对象高分辨率的实时的三维的图像。同时可通过优化超声换能器的中心频率和带宽提高成像分辨率,也可通过优化阵列式换能器的阵元材料、形状、尺寸、数量、密度、空间排布方式提高成像分辨率。突破了传统太赫兹成像的光学衍射极限对成像分辨率的限制,实现真正的太赫兹波的高分辨的实时三维成像。旨在应用于烧伤诊断、创面修复过程进行监控。
-
公开(公告)号:CN114422923A
公开(公告)日:2022-04-29
申请号:CN202210316744.9
申请日:2022-03-29
Applicant: 之江实验室
Abstract: 本发明公开了一种谐振式MEMS麦克风、声学成像仪和光声光谱检测仪,包括绝缘基底;硅谐振器,包括依次相连的谐振器锚点、连接梁、声波接收区和动梳齿,所述谐振器锚点的底部固定在所述绝缘基底上,所述连接梁、声波接收区、动梳齿悬在空中;固定电极,包括电极锚点和定梳齿,所述电极锚点固定在绝缘基底上,定梳齿悬在空中,定梳齿和所述动梳齿互相交错排列。本发明提出的MEMS麦克风采用悬臂梁结构,工作在一阶共振模态,使麦克风只响应共振频率附近特定频段的声波,而降低其他频率范围的噪声,在麦克风的硬件层面实现了自降噪功能;采用变面积式梳齿结构对振动进行检测,在增加电容检测的灵敏度同时,保持了较小的气体阻尼,提高了声波测量的灵敏度。
-
-
-
-
-
-
-
-
-