-
公开(公告)号:CN109192430A
公开(公告)日:2019-01-11
申请号:CN201811019618.7
申请日:2018-08-31
Applicant: 北京科技大学广州新材料研究院
Abstract: 本发明涉及提高金属软磁粉芯高频有效磁导率的制备方法及产品,其方法包括以下制备步骤:1)低磁导率合金软磁粉末颗粒的制备;2)低磁导率合金软磁粉末颗粒的绝缘和包覆;3)高频有效磁导率圆弧块状磁粉芯的制备;4)复合磁粉芯压制成型;5)复合磁粉芯内润滑剂的燃烧去除;6)复合磁粉芯的固化烧结;7)复合磁粉芯的退火热处理、倒角、热喷涂,形成最终产品。本发明通过将已绝缘处理的低磁导率合金软磁粉末颗粒包裹在高频有效磁导率的圆弧块软磁合金磁粉芯外围,压制成复合磁粉芯,以降低非磁性气隙比例,减少磁通路长度增加,实现磁粉芯产品的高有效磁导率。节约磁粉芯器件产品的铜线使用量,降低成本,提高生产效率。
-
公开(公告)号:CN109136977A
公开(公告)日:2019-01-04
申请号:CN201810934553.2
申请日:2018-08-16
Applicant: 北京科技大学广州新材料研究院
IPC: C25B11/04 , C25B1/06 , B01J23/755
Abstract: 本发明涉及富含阳离子空位的NiFe‑LDH析氧电催化材料的制备方法及应用,所述方法包括以下步骤:(1)将Ni‑Fe合金基体浸入到电解液中;所述电解液含有1~3wt%的NaF、4~7wt%的(NH4)2MoO4,15~25wt%的H2O、25~40wt%的甘油和25~55wt%的磷酸;(2)对浸入到电解液中的Ni‑Fe合金基体进行阳极氧化处理,得到NiFeMo阳极氧化膜;(3)对步骤(2)处理后的样品进行碱液刻蚀处理,处理后清洗并干燥,得到NiFe‑LDH析氧电催化材料。本发明制备的电催化材料具有较高的催化活性、良好的电化学稳定性,制备工艺简单、高效、成本低,制备方法具有可推广性,有助于进一步推动LDH催化剂的发展和应用。
-
公开(公告)号:CN107032733A
公开(公告)日:2017-08-11
申请号:CN201710447550.1
申请日:2017-06-14
Applicant: 北京科技大学广州新材料研究院
CPC classification number: C04B28/182 , C04B2111/00025 , C04B2111/00482 , C04B14/08 , C04B14/04 , C04B12/04 , C04B14/305 , C04B14/30 , C04B2103/0057 , C04B16/02 , C04B2103/40 , C04B24/20
Abstract: 本发明涉及一种释放负离子的硅藻泥及其制备方法。以重量百分比计,该释放负离子的硅藻泥主要由以下原料制备而成:硅藻土10%~50%,复合电气石粉10%~40%,稀土氧化物0.5%~5%,钛白粉5%~30%,胶凝材料5%~30%,可再分散乳胶粉1%~15%,纤维素0.1%~2%;以重量百分比计,所述复合电气石粉主要由以下原料制备而成:50%~80%电气石粉,10%~40%纳米二氧化钛,1%~10%硅酸钠,0.5%~1%表面活性剂。本发明的硅藻泥能够持续释放负离子和远红外线,具有良好的空气净化效果和人体保健作用,且净化效率及净化持久性高,硅藻泥的附着力好。
-
公开(公告)号:CN114951699B
公开(公告)日:2024-05-10
申请号:CN202210601591.2
申请日:2022-05-30
Applicant: 北京科技大学广州新材料研究院
Abstract: 本发明公开了一种选择性激光烧结制备的不锈钢致密零件及其制备方法,该方法首先采用机械干混法或溶剂沉淀法制备热塑性聚合物和不锈钢混合后的复合粉末;然后采用选择性激光烧结技术成形该复合粉末形成预成形坯;最后在真空或气氛保护下进行烧结脱脂和二次烧结的得到不锈钢致密零部件。该工艺制备过程简单,且通过机械干混法或溶剂沉淀法制备的复合粉末混合的均匀,在经过激光烧结烧结过程及后续的脱脂和二次烧结后,使得所制备零件的孔隙变小,致密度提高,进而保证了零件的抗拉强度、定非比例延伸强度和断后伸长率,因此能够批量快速制备复杂形状的致密不锈钢零件,具有重大的应用价值。
-
公开(公告)号:CN114921682B
公开(公告)日:2023-03-28
申请号:CN202210740552.0
申请日:2022-06-28
Applicant: 北京科技大学广州新材料研究院
Abstract: 本发明公开了一种高导热各向同性的石墨球‑铜基复合材料及其制备方法,所述高导热各向同性的石墨球‑铜基复合材料由纯铜粉末、石墨球颗粒组成,其中纯铜粉末所占体积分数为10~50%,粒径为50μm,石墨球颗粒所占体积分数为50~90%,石墨球颗粒粒径为33μm,且所述石墨球颗粒采用盐浴镀进行表面改性,并与纯铜粉末在机械混合后经过放电等离子活化烧结进行成品制备,所生产的复合材料具有近似各向同性高热导率、低热膨胀系数的优异性能,该复合材料的制备方法简单可靠,热导率各向同性度较好。
-
公开(公告)号:CN115011885A
公开(公告)日:2022-09-06
申请号:CN202210648156.5
申请日:2022-06-09
Applicant: 北京科技大学广州新材料研究院
Abstract: 本发明提供了一种不锈钢,以重量百分数计,包括如下原料:95%~98%的17‑4PH不锈钢、0.1%~0.5%的铜锡合金、1.5%~5%的金属钼、0.1%~0.2%的金属钛与0.01%~0.1%的钒铁合金。本发明所述的不锈钢的密度与致密度均较高,抗拉强度与硬度性能较好,并且所需烧结温度低,降低了生产能耗与成本。
-
公开(公告)号:CN115011838A
公开(公告)日:2022-09-06
申请号:CN202210646700.2
申请日:2022-06-09
Applicant: 北京科技大学广州新材料研究院
Abstract: 本发明涉及一种稀土改性钛合金,以重量百分比计,原料包括:低氧氢化脱氢钛粉85.0%~94.0%、铝钒合金粉5.0%~12.0%、钛锡合金粉0.1%~1.5%、以及铝‑稀土合金粉0.1%~1.5%。上述稀土改性钛合金通过合金的方式引入了稀土元素和锡元素,利用稀土元素的高活性能够净化钛合金基体中的杂质元素(C、O、S)等,同时提高形核率,细化钛合金晶粒,改善钛合金性能,锡元素具有低熔点能够有效降低钛合金烧结温度,进一步提高钛合金材料的致密度,再结合以合理的元素配比调控,能够进一步降低钛合金的加工难度和生成成本。
-
公开(公告)号:CN114957996A
公开(公告)日:2022-08-30
申请号:CN202210537959.3
申请日:2022-05-17
Applicant: 北京科技大学广州新材料研究院
Abstract: 本发明公开了一种具有高导热性的柔性硅橡胶基片,仅由低粘度的加成型液态硅橡胶和导热填料组成,导热填料由单一粒径或一种以上粒径混合的球形氧化铝组成,并通过添加增稠剂解决导热填料低载量时的基片分层问题,涉及的组分极少,本发明的柔性硅橡胶基片复合粘度较低的加成型液态硅橡胶及球形氧化铝,搅拌位阻小,球形氧化铝分散均匀,成品具有高表面质量和均一的导热性能,本发明还公开了上述柔性硅橡胶基片的制备方法,通过凝胶流延工艺结合低粘度硅橡胶与球形氧化铝,制备了薄且性能均一、各向同性的柔性硅橡胶基片,具有设备简单、可进行高效地连续性生产的优点,制成的柔性硅橡胶基片缺陷小,性能均一,可实现规模化、工业化生产。
-
公开(公告)号:CN112245077B
公开(公告)日:2022-04-22
申请号:CN202010970393.4
申请日:2020-09-15
Applicant: 北京科技大学广州新材料研究院
IPC: A61F2/82
Abstract: 本发明提供了一种孔径梯度多孔支架及用于其的极小曲面结构,该极小曲面结构单元为Gyroid曲面结构单元、Primitive曲面结构单元、Diamond曲面结构单元或I‑WP曲面结构单元,所述Gyroid、Primitive、Diamond和I‑WP曲面结构单元分别由隐函数表达式控制;Gyroid、Primitive、Diamond和I‑WP曲面结构单元的孔径均为200~1000μm、孔隙率均为10~90%,Gyroid、Primitive、Diamond和I‑WP曲面结构单元在x、y、z方向的长度a、b、c均为0.5~2mm。基于该极小曲面结构单元得到与自然骨相似孔隙结构和功能的仿生支架。
-
公开(公告)号:CN112812589A
公开(公告)日:2021-05-18
申请号:CN202011583319.3
申请日:2020-12-28
Applicant: 北京科技大学广州新材料研究院
Abstract: 本发明公开了钛合金涂层及其制备方法。该钛合金涂层由以下重量百分数的原料制备而成:钛或钛合金粉40~85%,光吸收剂10~40%,包覆剂1~10%,粘结剂1~10%,表面活性剂0.1~5%,溶剂余量。所述光吸收剂包括纳米TiO2和纳米CeO2,纳米TiO2和纳米CeO2的质量比为1‑4:1;所述的钛合金粉为Ti‑6Al‑4V、Ti‑5Al‑2.5Sn和Ti‑8Al‑1Mo‑1V中的任意一种,所述包覆剂为聚乙二醇;所述粘结剂为聚乙烯醇PVA,所属表面活性剂为OP‑10。本发明以钛合金粉末为涂层原料,在氩气保护下,采用激光熔覆的方法制备钛合金涂层具有较好的耐腐蚀性,将该涂层推广应用于工业金属结构的防腐蚀领域,既可延长基体材料在苛刻环境中的服役年限,解决工业腐蚀的难题,又能有效降低生产成本,提高企业的经济效益。
-
-
-
-
-
-
-
-
-