-
公开(公告)号:CN115130290A
公开(公告)日:2022-09-30
申请号:CN202210696903.2
申请日:2022-06-20
Applicant: 华中科技大学
IPC: G06F30/20 , G06F30/398 , E21B7/00 , G06F119/06
Abstract: 本发明公开了一种高压脉冲放电破岩系统的迭代优化设计方法,属于脉冲功率技术领域。方法包括:确定破岩需求,确定岩石与液体介质种类以及钻孔直径;确定伏秒特性,绘制实际工况下岩石与液体介质的伏秒曲线;破碎电极电场优化,对破碎电极电进行迭代优化,使得破碎电极电场分布满足破岩需求;输出电压脉冲优化,对驱动源设计进行迭代优化,使得输出电压脉冲满足破岩需求。本发明从实际破岩需求出发,通过有限元仿真与电路仿真软件分别对破碎电极与驱动源设计进行优化,为高压脉冲放电破岩系统的设计提供指导,提高高压脉冲破岩系统的设计效率,降低系统的设计成本,提高系统的破岩效率、可靠性、使用寿命以及对于不同工况的适用性。
-
公开(公告)号:CN115015097A
公开(公告)日:2022-09-06
申请号:CN202210650705.2
申请日:2022-06-09
Applicant: 华中科技大学
IPC: G01N17/00
Abstract: 本发明公开了一种金属化膜电极腐蚀观测装置及方法。本发明采用两层单面金属化膜模拟电容,金属化膜样品置于恒温恒湿箱内部,通过恒温恒湿箱控制温度和湿度,使用高频电压源给金属化膜样品两端施加电压,并通过示波器测量电压幅值和频率。试验过程中采用光学显微镜观测金属化膜电极腐蚀点直径或电极边缘退化距离,进而可以得到不同电压幅值、频率和电极成分下的电极腐蚀速率。本发明试验装置简单、测量方法便捷、可操作性强,观测结果准确度高。
-
公开(公告)号:CN114737877A
公开(公告)日:2022-07-12
申请号:CN202210207807.7
申请日:2022-03-04
Applicant: 华中科技大学
Abstract: 本发明公开了一种高压脉冲破岩拓扑系统,包括依次连接的发电机、高压变换单元、高压隔离及反压吸收单元、高压脉冲叠加单元、高压脉冲陡化单元、高压脉冲传输单元及破碎电极。高压变换单元用于将发电机输出的低压交流电变换为高压直流电;高压隔离及反压吸收单元包括由保护电阻、反压吸收电阻以及高压硅堆,保护电阻与高压变换单元串联,用于实现高压变换单元与高压脉冲叠加单元的电位隔离;高压硅堆与反压吸收电阻反并联于高压脉冲叠加单元,用于吸收高压脉冲叠加单元的电容上产生的反压;高压脉冲叠加单元将多级脉冲电容器的电压进行叠加,输出高压脉冲,经高压脉冲陡化单元进行陡化后,经高压脉冲传输单元传输至破碎电极以对岩石进行破碎。
-
公开(公告)号:CN112614664A
公开(公告)日:2021-04-06
申请号:CN202011460661.4
申请日:2020-12-11
Applicant: 华中科技大学
IPC: H01F27/16
Abstract: 本发明公开了一种用于特种集成电源系统中的重频水冷电感及制作方法,属于电气工程技术领域。该重频水冷电感包括:环氧筒、管式线圈、外包封层、上端盖、下端盖、进水水嘴、出水水嘴、第一引出电极和第二引出电极。本发明提供的重频水冷电感主要用于特种集成电源系统,这种电源系统储能密度高,该电感既能调节特种电源系统中的电流波形,还能使整个电源产生的电流达MA级,通过循环水对该电感进行降温在30℃以下,可以保证特种电源系统充电间隔周期6秒,连续工作10次的放电能力,保证了系统的快速重复工作性、可靠性和便捷性。
-
公开(公告)号:CN110391058B
公开(公告)日:2020-07-10
申请号:CN201810361271.8
申请日:2018-04-20
Applicant: 华中科技大学
Abstract: 本发明公开了一种用于大功率电源系统的毫欧级假负载及设计方法。该假负载包括:外层金属管1,内层金属管2,金属上圆盘3,金属下圆盘4,接线端丝孔5,接线插座丝孔6,长方形孔8;内层金属管2的高度大于外层金属管1的高度;内层金属管2同轴放进外层金属管1中,两金属管的底部同轴焊接在金属下圆盘4上,内层金属管2的顶部焊接在金属上圆盘3上,接线端丝孔5位于外层金属管1的管壁上,接线插座丝孔6位于金属上圆盘3上,长方形孔8位于内层金属管2的管壁上,其高度大于外层金属管1的高度。本发明通过内外层金属管同轴焊接而成的假负载,避免趋肤效应,散热快,结构紧凑体积小,制作省力省时,假负载电阻小,达到毫欧级。
-
公开(公告)号:CN107332440B
公开(公告)日:2019-04-12
申请号:CN201710659734.4
申请日:2017-08-04
Applicant: 华中科技大学
IPC: H02M3/07
Abstract: 本发明公开了一种基于耦合电抗器的脉冲强激光泵浦电源电路,包括第一充电单元、控制监测单元、n/2个第一储能单元,第一组晶闸管开关、第二组晶闸管开关、第一熔断器、第二熔断器、n/2个第二储能单元,第二充电单元,耦合电抗器Lm、汇流母排、m路调波电感;耦合电抗器Lm包括第一绕组、第二绕组,第一绕组的同名端和第二绕组的异名端均与汇流母排连接,第一绕组的异名端通过第一组晶闸管开关连接至第一熔断器的一端,第二绕组的同名端通过第二组晶闸管开关连接至第二熔断器的一端。本发明利用耦合电抗器在两组晶闸管开关导通动作出现时延差时,耦合电抗器能够使未导通的晶闸管开关两端的电压差钳制保持高压,有助于晶闸管开关快速导通。
-
公开(公告)号:CN102437512B
公开(公告)日:2013-02-13
申请号:CN201110267365.7
申请日:2011-09-09
Applicant: 华中科技大学
IPC: H03K17/52
Abstract: 一种气体开关,包括上电极、下电极、绝缘套筒、金属套筒,上电极与下电极是由高密度石墨材料制成并呈轴向对称设置,上电极的下部、下电极的上部以及金属套筒的上部都经过倒圆角处理,绝缘套筒紧套于下电极的外部,绝缘套筒的高度小于下电极的高度,金属套筒紧套于绝缘套筒的外部,金属套筒的高度与下电极的高度基本相同。金属套筒紧靠在绝缘套筒的外部,从而避免了因下电极严重烧蚀而导致的气体开关导通性能下降的问题,同时延长了气体开关的使用寿命。此外,下电极与金属套筒之间形成的凹槽可以让等离子体向上电极方向运动,从而有效地保证气体开关的击穿和导通性能。
-
公开(公告)号:CN115130290B
公开(公告)日:2025-01-28
申请号:CN202210696903.2
申请日:2022-06-20
Applicant: 华中科技大学
IPC: G06F30/20 , G06F30/398 , E21B7/00 , G06F119/06
Abstract: 本发明公开了一种高压脉冲放电破岩系统的迭代优化设计方法,属于脉冲功率技术领域。方法包括:确定破岩需求,确定岩石与液体介质种类以及钻孔直径;确定伏秒特性,绘制实际工况下岩石与液体介质的伏秒曲线;破碎电极电场优化,对破碎电极电进行迭代优化,使得破碎电极电场分布满足破岩需求;输出电压脉冲优化,对驱动源设计进行迭代优化,使得输出电压脉冲满足破岩需求。本发明从实际破岩需求出发,通过有限元仿真与电路仿真软件分别对破碎电极与驱动源设计进行优化,为高压脉冲放电破岩系统的设计提供指导,提高高压脉冲破岩系统的设计效率,降低系统的设计成本,提高系统的破岩效率、可靠性、使用寿命以及对于不同工况的适用性。
-
公开(公告)号:CN117744479B
公开(公告)日:2024-07-26
申请号:CN202311715295.6
申请日:2023-12-13
Applicant: 华中科技大学
IPC: G06F30/27 , G06N3/126 , G06F111/06
Abstract: 本发明提供了脉冲电源中器件与模块运行域协同优化的方法以及系统,属于脉冲电源领域,其包括:S1根据脉冲电源运行工况,对其组成器件进行初步选型,获得初选器件集合,S2将步骤S1获得的初选器件集合作为初始种群,采用遗传算法对器件集合进行优化,获得器件最优集合,进而获得最优器件运行域,S3将单个器件的最优运行域交合形成对应第一级分模块的最优运行域,S4将当前级分模块的最优运行域与剩余的单个器件的最优运行域交合形成下一级分模块的最优运行域,直至穷尽所有的单个器件,最终获得整个脉冲电源总模块的最优运行域。本发明能解决强流脉冲电源中各器件的指标之间可能存在的相互矛盾问题以及各器件之间的选型契合度小的问题。
-
公开(公告)号:CN117725871B
公开(公告)日:2024-07-05
申请号:CN202311852187.3
申请日:2023-12-28
Applicant: 华中科技大学
IPC: G06F30/373 , G06F30/367 , G06F111/06 , G06F119/08 , G06F119/02 , G06F119/14 , G06F119/04 , G06F119/16
Abstract: 本发明提供一种脉冲晶闸管型强流开关多目标协同优化设计的评估方法,属于脉冲功率技术领域,所述方法包括:基于脉冲电流和脉冲晶闸管的热网络模型,计算瞬态结温,获取脉冲晶闸管的结温升数据;基于脉冲电流和脉冲晶闸管的接触微元等效电路模型,进行熔铝分析,获取脉冲晶闸管的熔铝分析数据;基于寿命预测模型和脉冲晶闸管的结温升数据和熔铝分析数据,获取脉冲晶闸管的预测寿命;基于脉冲晶闸管的预测寿命和寿命指标,获取评估结果。通过在脉冲电流作用下计算瞬态结温以及分析熔铝,进而预测脉冲晶闸管的寿命,若预测寿命符合寿命指标,则确定晶闸管结构、通流能力以及寿命三者达到平衡,实现准确地评估脉冲晶闸管多目标协同优化设计。
-
-
-
-
-
-
-
-
-