-
公开(公告)号:CN114409102A
公开(公告)日:2022-04-29
申请号:CN202210001312.9
申请日:2022-01-04
Applicant: 吉林大学
IPC: C02F7/00
Abstract: 本发明公开了一种具有对旋式斜流叶轮的潜水曝气机,本发明使用对旋式斜流叶轮一反一正相对放置,协同运转,上方倒置叶轮针对鼓风送气方面,下方正放叶轮针对搅拌水流方面,首先叶轮叶片的斜轮廓,扩大搅拌水流的面积,并且叶片外侧具有导向性,转动起来水流向外侧输送,提高了形成的最大面积区域;其次,上方斜流叶轮轮毂表面开大量通气孔,鼓风送气更具针对性,下方斜流叶轮同样的位置开少量通气孔,气泡沿表面上升过程中,使表面尽量少黏附污水中的其他物质,达到减阻效果;气体从管中输出至水中自动向上冒出,通过上方斜流叶轮叶片转动向下拍压,下方叶轮转动对水流有向上抬升的趋势,形成混合区域,进一步提升空气跟水流混合的效率。
-
公开(公告)号:CN114275910A
公开(公告)日:2022-04-05
申请号:CN202111404145.4
申请日:2021-11-24
Applicant: 吉林大学
IPC: C02F7/00
Abstract: 本发明公开了一种潜水曝气机,本发明针对现有的潜水曝气机需要水下电机带动水下叶轮旋转将污水池中的水流进行带动,鼓风机电机带动鼓风机叶轮旋转做功将空气带入污水池,整个装置共有两套电机所造成的能量损耗和空间的增大以及噪声问题。本发明只在上面上方设置一个电机,驱动水下的排水叶轮、吸气叶轮和排气叶轮,吸气叶轮为轴流叶轮,可以满足大风量需要,排气叶轮采用后向离心叶轮,可提高空气的静压,使得空气能够与水流融合的更为迅速,增加曝气面积。本发明可有效的解决目前曝气机成本高、噪声大、能耗高的问题。
-
公开(公告)号:CN112898626B
公开(公告)日:2021-12-28
申请号:CN202110092480.9
申请日:2021-01-24
Applicant: 吉林大学
IPC: C08J9/36 , C08J7/04 , C08L83/04 , C08L5/04 , C08L91/06 , C08J9/26 , C09D183/04 , C09D175/04 , C09D5/16 , C09D191/00
Abstract: 本发明公开了一种仿生海洋防污皮肤及其制备方法,属于仿生材料技术领域。其由底层、多孔微结构层、微胶囊、仿珊瑚触手和仿珊瑚粘液组成,所述的底层由硅橡胶和聚氨酯复合而成,厚度为1~5mm;多孔结构层为硅橡胶材质,的厚度为1~5mm,其多孔结构的孔径1~100μm,多孔结构层中还包含有1~3wt%的微胶囊,所述的微胶囊包裹硅油或或食用油,多孔结构层表面还设有仿珊瑚触手,仿珊瑚触手由硅橡胶制成,触手为梯形圆柱或圆台状,触手高度h的范围为5~15mm,触手圆心间距a的范围为1mm~5mm,触手的末端直径和底部直径比m:n范围为0.5~0.8;仿珊瑚粘液为硅油或或食用油,涂覆在多孔结构层表面。该材料具有强吸附、防污的特点、加入了微胶囊提高了SLIPS稳定性。
-
公开(公告)号:CN113249008A
公开(公告)日:2021-08-13
申请号:CN202110311966.7
申请日:2021-03-24
Applicant: 吉林大学
Abstract: 本发明公开了一种仿生智能可重复自修复涂层及其静电喷涂工艺方法,属于仿生材料技术领域。本发明以双组分环氧树脂胶为基体,掺入HNTs和冻干研磨后的PCL/TO@CA/环氧混合产物,通过静电喷涂方式与经过表面预处理的铁片表面形成交联。受生物组织破损自修复机制启发,基于仿生相似性原理,利用微胶囊及微球触发、响应、执行、反馈机制,实现涂层本身及金属基底双重智能自修复新思路,并提出仿生智能自修复涂层体系。该涂层分别利用机械应力及化学降解为触发机制,通过微胶囊与微球利用芯材及强化因子与基材的交联,形成的阻隔层,达到对涂层体系的智能修复,两者协同作用,可实现对涂层及金属基底材料的双重修复,从而显著提高涂层对基底材料的防护性能。
-
公开(公告)号:CN112763364A
公开(公告)日:2021-05-07
申请号:CN202110203866.2
申请日:2021-02-23
Applicant: 吉林大学
Abstract: 本发明涉及一种用于测试海洋防污涂层防污性能试验装置,水箱的两个出水口上分别连接有水泵和蠕动泵,水泵和蠕动泵通过管路与测试管道池的进水口连通,测试管道池的出水口与水箱的进水口连通;测试管道池内有样品安装架,第一电机的轴伸入到测试管道池内与样品安装架连接,第二电机的轴伸入到测试管道池内与位移传感器连接,第三电机的轴连接有旋转往复机构,旋转往复机构伸入到测试管道池内与推波板的框架连接。该装置简易、高效、全面,对规范海洋防污涂层产品防污性能评估具有重要意义,可以提高海洋防污涂层研制成功率,降低研制费用。
-
公开(公告)号:CN112521813A
公开(公告)日:2021-03-19
申请号:CN202011227327.4
申请日:2020-11-06
Applicant: 吉林大学
IPC: C09D133/02 , C09D133/26 , C09D133/14 , C08F220/06 , C08F220/30 , C08F220/24 , C08F220/56 , C08F220/28 , B05D5/04 , B05D5/08 , F16L58/10
Abstract: 本发明涉及一种仿生型石油管道涂层及其制备方法,属于新型高分子表面涂层。该涂层以典物鲀鱼体表为基本研究模型,利用亲水性单体和低表面能含氟长链以及二苯甲酮类光引发剂聚合而成。通过紫外光引发可以将涂层固定在各种基底材料表面,基底与涂层之间附着力较强。涂层改变了基底的表面性能,实现了对基底表面的亲水改性和对低表面张力液体如多种油类的防黏附性能。这类涂层可实现动态和静态环境下的优异亲水疏油性能。此发明重点实用于解决石油管道内衬管壁结蜡的共性难题,其具有节能、高效、长寿等特点,属于防止管壁结蜡的“治本”的技术,具有良好的应用前景和经济价值,是未来输油管道防蜡技术的发展必然趋势。
-
公开(公告)号:CN111041565A
公开(公告)日:2020-04-21
申请号:CN201911103743.0
申请日:2019-11-13
Applicant: 吉林大学
Abstract: 本发明公开了一种用于光动力学和光热力学协同治疗的功能性纳米粒子掺杂的聚合物抗菌纤维膜的制备方法。本发明的步骤:S1.上转换纳米粒子的合成;S2.二氧化钛负载的上转换纳米粒子的合成;S3.二氧化钛和氧化石墨烯负载的上转换纳米粒子的合成;S4.复合纳米粒子负载的聚偏氟乙烯复合纤维膜。该方法的优点是利用单一的NIR光源即可同时实现光动力学和光热力学协同的高效杀菌效果,使作用体系简便有效,该复合膜具有良好的细胞相容性,可以重复杀菌,不会对生物体产生伤害,更不会引发生物体产生耐药性,对革兰氏阴性菌和革兰氏阳性菌均表现出较明显的抗菌活性。
-
公开(公告)号:CN110844967A
公开(公告)日:2020-02-28
申请号:CN201911355709.2
申请日:2019-12-25
Applicant: 吉林大学
IPC: C02F1/34
Abstract: 本发明涉及一种灭菌净水装置,包括依次连接的进水管道,多孔介质灭菌管道和出水管道,所述多孔介质灭菌管道包括管道以及填充在管道内腔的多孔介质,多孔介质上设有多种孔径、相互连通的孔。水流从进水管道流入、经过多孔介质灭菌管道时,被多孔介质迅速分散成细小微流,而由于孔径的变化,微流的流速压力急剧变化,当压力降低时,产生微空泡,当微空泡被输送到压力升高区域时,微空泡溃灭,产生的高温使细菌细胞壁局部损伤,产生的微射流及冲击波使细菌细胞壁产生破损,导致细菌结构和功能内核受损而减活、死亡。本发明在水流动输送过程中即可完成灭菌,无需额外能源及耗材消耗,并且不会在水中残留任何有害物质,安全可靠、成本低。
-
公开(公告)号:CN109206652A
公开(公告)日:2019-01-15
申请号:CN201811028942.5
申请日:2018-09-05
Applicant: 吉林大学
CPC classification number: C08J7/12 , C08J5/18 , C08J2383/04 , C08K3/18
Abstract: 本发明公开了一种能实现润湿性转换的智能表面构建方法,该将液体橡胶和磁性微粒按一定比例进行混合,然后涂布在基板上,在基板上方一定距离处固定一防粘平板,从基板底部对整个装置施加竖直向上的磁场,液体橡胶自组装形成蘑菇状柱阵列结构,固化成型后,利用氟硅烷对微柱阵列进行修饰,获得依赖微结构调控实现润湿性转换的智能表面。通过外部磁场的诱导,该表面的蘑菇状柱阵列结构可发生弯曲变形,导致水和油在该表面的润湿状态可在低粘附的超双疏状态与高粘附的疏水疏油状态间可逆转换。该制备方法工艺简单、无需复杂设备、无需模板辅助,有利于润湿性可转换智能表面的大规模制造和实际应用。
-
公开(公告)号:CN108413007A
公开(公告)日:2018-08-17
申请号:CN201810207865.3
申请日:2018-03-14
Applicant: 吉林大学
Abstract: 本发明公开了一种具有自适应功能的耐磨齿轮及其制造方法。目的在于提供一种具有压力、温度自适应功能的耐磨齿轮,尤其在齿轮温度瞬间升高时,这种齿轮能较长时间地保持良好的传动能力。为克服齿轮传统机械加工方式难以制备TiNi合金/陶瓷仿生结构材料齿轮的难题,本发明采用选区激光熔化技术(SLM)按照如下步骤制备齿轮:选取混合单质粉末、TiNi合金粉末或TiNi合金/陶瓷复合材料粉末,将齿轮的二维切片模型导入3D打印成型装置的控制系统,设定基于SLM的3D打印工艺参数,在真空/惰性气体保护下进行齿轮的3D打印成型,成型齿轮在真空/惰性气体保护下热处理。该齿轮在高载荷下,使用寿命得到了极大的提升,是一种具有广泛应用前景的新型高性能齿轮。
-
-
-
-
-
-
-
-
-