-
公开(公告)号:CN116338501B
公开(公告)日:2023-09-12
申请号:CN202211635410.4
申请日:2022-12-19
Applicant: 哈尔滨工业大学
IPC: G01R31/392
Abstract: 本发明公开了一种基于神经网络预测弛豫电压的锂离子电池健康检测方法,所述方法以利用神经网络预测弛豫电压为核心方法,利用充电后短时间电池电压变化、温度、倍率等信息通过神经网络对弛豫电压进行预测,再结合弛豫电压和电池容量的相关性关系对电池健康状态进行评估。本发明结合弛豫电压预测与神经网络预测两种方法,实现短时间得到弛豫电压,进而对电池健康状态进行精确预测,具有应用范围广(适用于目前多种商用锂离子电池)、测试时间短、检测精度好的特点。
-
公开(公告)号:CN115692904A
公开(公告)日:2023-02-03
申请号:CN202211020934.2
申请日:2022-08-24
Applicant: 哈尔滨工业大学
Abstract: 一种基于SOC调控的废旧锂离子电池正极材料的回收方法,属于废旧电池回收利用技术领域及电催化技术领域,具体包括以下步骤:步骤一、首先对废旧的锂离子电池进行若干次小电流充放电活化,评估废旧锂离子电池的剩余容量;步骤二、根据最后一次活化的充电容量,来设置下一圈电池的充电容量或截止电压,控制废旧电池的荷电态;步骤三、拆解具有荷电态的废旧锂离子电池,分离出正极极片,并用有机溶剂洗涤正极极片,晾干;步骤四、刮下干燥后的正极材料粉末,研磨过筛即得特定荷电态的催化剂材料。本发明通过调节废旧的锂离子电池的充电深度,精准的控制正极极片的荷电态,从而调控催化剂中的锂含量,获得具有不同电子结构的催化剂材料。
-
公开(公告)号:CN115064702B
公开(公告)日:2022-12-13
申请号:CN202210868779.3
申请日:2022-07-22
Applicant: 哈尔滨工业大学
IPC: H01M4/66 , H01M10/054 , H01M10/058 , H01M10/0565
Abstract: 一种亲钠型3D碳集流体及其制备方法和应用以及无负极固态钠电池的制备方法,属于钠离子电池技术领域,方案如下:亲钠型3D碳集流体的制备、原位聚合浆料的制备、复合固态电极片的制备、一体化无负极固态钠电池的制备。其中,所述一体化无负极固态钠电池的制备采用原位聚合策略,将聚合浆料滴加到3D碳集流体和复合固态电极片上,可以实现集流体和固态电极片内部孔隙的消除及良好的界面润湿性,从而扩宽电池内部钠离子的传输路径并降低钠离子的迁移阻力。本发明兼具富成核位点诱导钠离子均匀沉积以提升无负极电池循环效率以及原位聚合一体化技术以促进界面钠离子传输的技术优势,将推动低成本、高安全、高能量密度的无负极固态电池的进步。
-
公开(公告)号:CN115360358A
公开(公告)日:2022-11-18
申请号:CN202211020932.3
申请日:2022-08-24
Applicant: 哈尔滨工业大学
IPC: H01M4/66 , H01M50/131 , H01M50/121 , H01M10/0525
Abstract: 一种基于光照激发的全固态锂二次电池及应用,属于全固态锂电池技术领域,具体方案如下:一种基于光照激发的全固态锂二次电池,包括正极极片、固态电解质Ⅰ、负极极片和电池壳体,所述正极极片包括正极集流体和涂覆在其上的正极材料,其特征在于:所述正极集流体和电池壳体的正极侧均是透光的。本发明中,通过电池结构设计,将锂离子电池的正极活性物质暴露在光源下,利用光源作为全固态锂二次电池的直接能量来源之一,在保证全固态电池容量、安全性能的前提下,利用光生电子和空穴,降低极化电势,最终使常规固态锂电池的倍率性能得到显著提升。
-
公开(公告)号:CN112551582B
公开(公告)日:2022-09-23
申请号:CN202011455143.3
申请日:2020-12-10
Applicant: 哈尔滨工业大学
IPC: C01G33/00 , H01M4/485 , H01M4/62 , H01M10/0525
Abstract: 本发明公开了一种氮掺杂的缺氧型铌酸钛电极材料的制备方法及应用,涉及锂离子电池技术领域,具体包括以下步骤:步骤一、称取铌源和钛源置于球磨罐中,以有机溶剂作为分散介质,使原料充分球磨混合得到混合物;步骤二、将步骤一所得混合物干燥,得到前驱体;步骤三、将步骤二所得前驱体在NH3气氛下进行管式炉煅烧处理,自然降温至常温后即得到氮掺杂的缺氧型铌酸钛电极材料。本发明在NH3气氛下煅烧改性,不但可以制造铌酸钛的缺氧态,拓宽锂离子进入电极的通道,使得材料可以存储更多的锂离子,而且引入氮元素进行掺杂,氮掺杂有益于提供更多活性位点,提高材料的电导性,使得N‑TiNb2O7‑x电极材料具有优异的电化学性能。
-
公开(公告)号:CN115064672A
公开(公告)日:2022-09-16
申请号:CN202210722192.1
申请日:2022-06-17
Applicant: 哈尔滨工业大学
IPC: H01M4/36 , H01M4/58 , H01M4/62 , H01M10/0525
Abstract: 本发明公开了一种星状包覆层电池电极材料及其制备方法和应用,其包括原位聚合物形成的具有离子电子双导电作用的星状包覆层,以及电池用活性物质材料,利用高稳定性的聚合物对活性进行包覆,包覆后的材料具有特殊的星状结构,具有较大的比表面积,且具有一定的柔韧性,能够增加活性物质与固体电解质的接触,并且缓解体积应变带来的界面失效,提高固态电池整体的性能。此外,本发明采用的星状包覆层为聚合物,具有一定的柔韧性,能够有效缓解复合固态电极中活性物质的体积膨胀/收缩,可以作为缓冲层,提高电池整体寿命。
-
公开(公告)号:CN114122319A
公开(公告)日:2022-03-01
申请号:CN202111408667.1
申请日:2021-11-19
Applicant: 哈尔滨工业大学
IPC: H01M4/13 , H01M10/0565 , H01M10/54
Abstract: 一种固态聚合物锂金属电池电极与电解质高效分离的方法,以扣式电池为例,所述方法为:对测试后固态聚合物锂金属电池进行拆解,去处外面金属壳;获得粘合紧密的单元块(锂金属||电解质||正极),然后从锂片中心撕下锂金属,暴露出聚合物电解质部分;步骤三、用特定溶剂浸泡单元片(电解质||正极)电解质一面;步骤四、反复浸泡,并除去浸泡后溶液,直至看到干净的正极;步骤五、在60‑80℃恒温10‑20h,得到正极材料。本发明涉及固态聚合物锂金属电池中电极与电解质高效分离的方法,本发明具有回收效率高且环境友好等优点,解决了循环测试后难以分离聚合物电解质与正极极片,并获得活性颗粒的问题。
-
公开(公告)号:CN113437249A
公开(公告)日:2021-09-24
申请号:CN202110729893.3
申请日:2021-06-29
Applicant: 哈尔滨工业大学
IPC: H01M4/13 , H01M4/139 , H01M4/04 , H01M10/052 , H01M10/0525
Abstract: 本发明公开了一种基于渗透法制备的全固态锂电池复合正极及其制备方法,涉及全固态锂电池技术领域。所述全固态锂电池正极为基于熔融渗透法得到的复合正极。本发明中,通过将煅烧得到的高离子电导率的Li1+xOHBrx在加热的条件下熔融渗透到正极极片的孔隙中,进而得到复合正极。该复合正极表面致密、均匀、孔隙率极低,并且可与固态电解质形成一个接触良好的固‑固界面,从而增大了固‑固接触面积,提供了稳定的、快速的锂离子通道,降低了界面电阻,最终使固态电池的性能得到了显著提高。
-
公开(公告)号:CN112357960A
公开(公告)日:2021-02-12
申请号:CN202011241289.8
申请日:2020-11-09
Applicant: 哈尔滨工业大学 , 中国电子科技集团公司第十八研究所
IPC: C01G33/00 , H01M4/485 , H01M4/62 , H01M10/0525
Abstract: 本发明公开了一种高性能稀土元素钕掺杂铌酸钛材料的制备方法及其在锂离子电池中的应用,所述铌酸钛材料的制备方法如下:一、将钛源化合物与草酸溶于有机溶剂中,将铌源化合物与草酸加热搅拌溶解与蒸馏水中,将含钕化合物溶解于稀盐酸当中;二、将步骤一配置的三种溶液混合通过加热搅拌蒸发溶剂法或者溶剂热法制备稀土元素钕掺杂的铌酸钛材料前驱体;三、将步骤二得到前驱体进行热处理,热处理后得到电化学性能较好的稀土元素钕掺杂铌酸钛材料。本发明通过稀土元素钕对铌酸钛材料进行掺杂改性,增大了晶胞尺寸、提升了材料锂离子传导速率,从而进一步提升铌酸钛的电化学性能,进而推进其在锂离子二次电池中的应用。
-
公开(公告)号:CN105575675A
公开(公告)日:2016-05-11
申请号:CN201511011426.8
申请日:2015-12-30
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种利用水/溶剂热法制备钛铌复合氧化物的方法及其在锂离子超级电容器中的应用,所述方法如下步骤:(1)按照钛铌氧化物TiNb2O7的化学计量比,称取相应的钛源和铌源溶解在水/有机溶剂体系中,然后放置于以聚四氟乙烯为内衬的反应釜中,调节pH在0.5~2.5之间,搅拌0.5~24h;(2)将盛有上述混合物的反应釜放置于均相反应器或者电热烘箱中,设置反应温度和反应时间进行水/溶剂热反应,反应结束后将溶液过滤水洗干燥后,即可得到TiNb2O7的前驱体;(3)将TiNb2O7的前驱体材料置于高温炉内充分反应后,随室温冷却,即可得到所需的钛铌复合氧化物TiNb2O7。本方法制备的钛铌复合氧化物TiNb2O7有着优秀的电化学性能,在其用做锂离子电池负极材料时有着较高能量密度、优异的安全性能。
-
-
-
-
-
-
-
-
-