-
公开(公告)号:CN114806512B
公开(公告)日:2024-02-27
申请号:CN202210559426.5
申请日:2022-05-23
Applicant: 桂林电子科技大学
IPC: C09K5/06
Abstract: 本发明公开了一种基于膨胀石墨和无纺布的复合相变控温材料,以正十八烷、膨胀石墨和无纺布为原料,通过高温改性、真空吸附和热压法制得。所得材料具有柔性特征、相变储热和控温性能。其中,正十八烷为相变材料,具有相变储热和控温的作用;膨胀石墨为骨架,起导热作用;无纺布为载体,起支撑作用。该材料可应用于导热控温及储热领域,其储热密度为43.78‑105.45 j/g、导热系数为0.762‑0.932 W/(m·K)。
-
公开(公告)号:CN117535034A
公开(公告)日:2024-02-09
申请号:CN202311476319.7
申请日:2023-11-08
Applicant: 桂林电子科技大学
Abstract: 本发明涉及一种膨胀石墨基高导热复合相变储能材料,由基体材料膨胀石墨EG、粘结剂聚偏二氟乙烯PVDF、造孔剂氯化钠NaCl、导热填料还原氧化石墨烯rGO、相变材料正十八烷OD制得,通过盐模板法和真空浸渍法制得,其中,EG的作用为提供多孔结构和导热骨架;PDVF的作用为提供粘结条件;NaCl的作用为构造多孔结构。其制备方法包括以下步骤:1,膨胀石墨基三维多孔海绵的制备;2,氧化石墨烯的负载和还原;3,相变材料的真空吸附。其应用同时具有高导热性能、相变储热性能、控温性能、光热转换性能和电热转换性能;导热系数为2.3244‑6.3840W/(m·K);储热密度为166.46‑168.93J/g;光热转换效率为96.3%,电热转换效率为74.4%。
-
公开(公告)号:CN116159600A
公开(公告)日:2023-05-26
申请号:CN202211714128.5
申请日:2022-12-30
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于共价‑金属有机框架双载体的复合材料,由JUC‑505共价有机框架、ZIF‑67金属有机框架和Ru元素组成,其中,在JUC‑505上生长ZIF‑67得到JUC‑505/ZIF‑67作为双载体,再通过负载Ru元素得到Ru‑(JUC‑505/ZIF‑67),具有磁性。原料包括无水碳酸钾、四氟对苯二腈、六羟基三亚苯、均三甲苯、1‑甲基吡咯烷、六水合硝酸钴、2‑甲基咪唑、三氯化钌水合物和氢氩混合气。其制备方法包括以下步骤:1,JUC‑505的制备;2,JUC‑505/ZIF‑67的制备;3,Ru‑(JUC‑505/ZIF‑67)的制备。作为硼氢化钠水解制氢催化剂的应用,在303 K下提供的产氢速率为25830‑35291 mL∙min‑1∙g‑1,放氢量为理论值的100%,催化放氢的活化能为Ea=23.9‑30.3 kJ∙mol‑1;在303 K下,10次回收/重复使用后,保留初始催化活性的83.2‑91.0%。
-
公开(公告)号:CN115948150A
公开(公告)日:2023-04-11
申请号:CN202211465386.4
申请日:2022-11-22
Applicant: 桂林电子科技大学
IPC: C09K5/06 , C09K5/14 , A01N59/16 , A01N59/20 , A01N25/10 , A01N25/08 , A01P1/00 , A01P3/00 , A41D31/30 , A41D31/14 , A41D31/04 , A41D13/005
Abstract: 本发明涉及一种基于银纳米线的控温抗菌柔性复合材料,以膨胀石墨、正十八烷、银纳米线、无纺布材料为原料,通过物理吸附和热压法制得,具有柔性、抗菌性能、相变储热性能和控温性能;膨胀石墨为基体材料,正十八烷为相变材料,银纳米线为抗菌材料,无纺布为支撑材料。其制备方法包括以下步骤:1,银纳米线的制备,2,掺杂银纳米线相变控温材料的制备,3,基于银纳米线的控温抗菌柔性复合材料的制备。应用于热管理防护服控温抗菌领域,导热系数为1.4373‑2.0130W/(m·K);储热密度为78.49‑124.64 J/g;控温时间为133‑214s;相变控温温度为20‑35℃,处于人体适宜温度范围;在高温工作环境下,内环境温度低于外环境4.6‑6.6℃。
-
公开(公告)号:CN114806512A
公开(公告)日:2022-07-29
申请号:CN202210559426.5
申请日:2022-05-23
Applicant: 桂林电子科技大学
IPC: C09K5/06
Abstract: 本发明公开了一种基于膨胀石墨和无纺布的复合相变控温材料,以正十八烷、膨胀石墨和无纺布为原料,通过高温改性、真空吸附和热压法制得。所得材料具有柔性特征、相变储热和控温性能。其中,正十八烷为相变材料,具有相变储热和控温的作用;膨胀石墨为骨架,起导热作用;无纺布为载体,起支撑作用。该材料可应用于导热控温及储热领域,其储热密度为43.78‑105.45 j/g、导热系数为0.762‑0.932 W/(m·K)。
-
公开(公告)号:CN114105119A
公开(公告)日:2022-03-01
申请号:CN202111417660.6
申请日:2021-11-26
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种超弹性瓜尔胶碳气凝胶,以多糖瓜尔胶为原料,磷酸氢二铵为催化剂,经两步热处理和低温碳化制得;具有超弹性、超轻性和高压缩性,在0.055 MPa的应力下,产生95%的形变;密度仅为0.458 g/cm3;在50%的压缩应变下可循环压缩高达50000次。其制备方法包括以下步骤:1)瓜尔胶气凝胶的制备;2)超弹性瓜尔胶碳气凝胶的制备。作为相变材料的应用,在高温环境中受外力后能够保持形状稳定;相变温度为30‑58℃,相变潜热为138‑179 J/g。具有以下优点,在磷酸氢二铵的催化作用下,使瓜尔胶在低温下热解、脱水,从而提高焦炭产率,减少碳材料的体积收缩;实现了复合相变材料的形状稳定和高热循环稳定性,在相变储热领域具有广阔的应用前景。
-
公开(公告)号:CN112375545B
公开(公告)日:2021-07-02
申请号:CN202011276895.3
申请日:2020-11-16
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种二氧化锰‑三聚氰胺甲醛树脂双壳层复合相变材料,利用氧化还原法以及电化学吸附法,先制备三聚氰胺甲醛树脂微胶囊,然后再在微胶囊表面构建MnO2纳米层,形成双壳层球形结构。其中,通过对微胶囊表面改性实现带负电,通过氧化还原反应实现进一步构建MnO2纳米层;MnO2纳米层的微观形貌为纳米粒与纳米线共同组成。其制备方法包括以下步骤:1)原料的预处理;2)微胶囊的制备;3)MnO2壳层的制备。作为相变材料的应用的光热转换效率为93%‑99%;相变温度为10‑29℃,相变潜热为116‑169J/g。本发明具有以下优点:1、有效解决相变过程中的泄露问题;2、高光热转换效率3、高相变潜热和热稳定性能。
-
公开(公告)号:CN112375545A
公开(公告)日:2021-02-19
申请号:CN202011276895.3
申请日:2020-11-16
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种二氧化锰‑三聚氰胺甲醛树脂双壳层复合相变材料,利用氧化还原法以及电化学吸附法,先制备三聚氰胺甲醛树脂微胶囊,然后再在微胶囊表面构建MnO2纳米层,形成双壳层球形结构。其中,通过对微胶囊表面改性实现带负电,通过氧化还原反应实现进一步构建MnO2纳米层;MnO2纳米层的微观形貌为纳米粒与纳米线共同组成。其制备方法包括以下步骤:1)原料的预处理;2)微胶囊的制备;3)MnO2壳层的制备。作为相变材料的应用的光热转换效率为93%‑99%;相变温度为10‑29℃,相变潜热为116‑169J/g。本发明具有以下优点:1、有效解决相变过程中的泄露问题;2、高光热转换效率3、高相变潜热和热稳定性能。
-
公开(公告)号:CN111662688A
公开(公告)日:2020-09-15
申请号:CN202010616069.2
申请日:2020-07-01
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种氮化硼/石墨烯双导热基气凝胶复合相变材料,由改性氮化硼/石墨烯气凝胶和正十八烷采用真空浸渍法复合而成。双导热气凝胶是以氧化石墨烯、改性氮化硼、聚乙烯吡咯烷酮和乙二胺为原料制备氮化硼/石墨烯水凝胶经冷冻干燥后,再恒温煅烧制得;聚乙烯吡咯烷酮作为交联剂,乙二胺作为还原剂。其制备方法包括以下步骤:1)改性氮化硼的制备;2)氮化硼/石墨烯双导热基气凝胶的制备;3)氮化硼/石墨烯双导热基气凝胶复合相变材料的制备。作为相变材料的应用,导热系数为0.9-1.6W/(m·K);相变温度为19-32℃,相变潜热为200-220J/g。本发明具有以下优点:1、导热系数提高738%;2、有效解决相变过程中的泄露问题;3、高相变潜热和热稳定性能。
-
公开(公告)号:CN110628033A
公开(公告)日:2019-12-31
申请号:CN201911068272.4
申请日:2019-11-05
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种聚酰亚胺接枝聚乙二醇复合固-固相变材料,主要成分包括聚乙二醇,聚酰亚胺和氧化石墨烯,通过聚乙二醇与聚酰亚胺前驱体和氧化石墨烯分子间官能团和氢键的相互作用,形成了相互交联的网络结构,再经惰性气氛高温条件下聚酰亚胺前驱体的进一步热交联,形成了稳定的相互交联的骨架结构,本发明材料具有交联多孔的层状结构。其制备方法包括以下步骤:1)氧化石墨烯改性聚酰亚胺前驱体的混合溶液的制备;2)层状交联多孔结构复合固-固相变材料的制备。
-
-
-
-
-
-
-
-
-