一种光伏组件玻璃/背板分离回收装置及方法

    公开(公告)号:CN117086069A

    公开(公告)日:2023-11-21

    申请号:CN202311102585.3

    申请日:2023-08-30

    Abstract: 本发明涉及一种光伏组件玻璃/背板分离回收装置及方法,装置包括沿光伏组件输送方向依次设置的加热段和回收段;加热段包括第一加热板、推杆和第一传送带;回收段包括第二加热板、玻璃面分离刀具、电池片收集腔、背板面分离刀具和第二传送带;光伏组件设于第一加热板与第一传送带之间,并能由推杆和第一传送带送至第二加热板与第二传送带之间,沿光伏组件输送方向,在第二传送带后方依次设有背板面分离刀具和玻璃面分离刀具,电池片收集腔设于玻璃面分离刀具下方。与现有技术相比,本发明装置通过一步实现组件背板和玻璃的分离,能够提高组件回收的效率,保证玻璃和背板完整性的同时提高回收率,具有高效化、机械化和规模化应用等优点。

    一种锅炉燃烧与脱硝过程协同优化控制的方法

    公开(公告)号:CN115145152A

    公开(公告)日:2022-10-04

    申请号:CN202210785842.7

    申请日:2022-07-04

    Abstract: 本发明涉及一种锅炉燃烧‑脱硝过程协同优化控制方法,包括基于CO监测的燃烧优化控制模块、基于风量等参数预报的还原剂总量控制模块和基于分区喷入量分布表的分区喷入控制模块。本发明建立了CO浓度与燃烧效率之间的神经网络模型,控制风量以优化锅炉燃烧效率;在此基础上,将风量指令作为前馈预报,克服脱硝系统的大延迟、大惯性及强非线性缺点,实时精确控制还原剂喷入总量;进一步,根据多工况下烟道内NOx特征,建立分区喷入量分布表,实时控制分区喷入阀门开度,实现还原剂与烟气的均匀混合,提高脱硝效率;本发明在大范围变负荷工况下,保证出口NOx浓度达标、提高脱硝控制精度、提升锅炉燃烧效率,实现机组降碳减排。

    低成本高效的污染物与CO2协同吸收-解吸解耦方法

    公开(公告)号:CN114712989A

    公开(公告)日:2022-07-08

    申请号:CN202210235430.6

    申请日:2022-03-11

    Abstract: 本发明涉及一种低成本高效的污染物与CO2协同吸收‑解吸解耦方法,建立了不同工况下的污染物与CO2协同吸收‑解吸解耦控制优化模型,以低成本高效获得高纯度液态污染物和CO2为寻优目标,构造自适应罚函数将有约束优化问题的求解转变成无约束优化问题,实现参数的实时、精确、稳定控制;辅以烟气预洗涤降温、多级中间冷却和塔顶除雾等手段,实现污染物和CO2的高效捕集。本发明吸收过程与解吸过程解耦,进行各级温度‑pH‑液气比与富液流量‑解吸温度的协同调控,实现高效低能耗污染物和CO2的协同捕集‑再生‑浓缩,降低了现有烟气净化系统与碳捕集系统分离运行的高昂成本。

    催化剂协同外场强化二氧化碳低能耗解吸系统及方法

    公开(公告)号:CN114699883A

    公开(公告)日:2022-07-05

    申请号:CN202210431144.7

    申请日:2022-04-22

    Abstract: 本发明涉及一种催化剂协同外场强化二氧化碳低能耗解吸系统及方法,吸收CO2后的富液经富液输送泵输运,与解吸后经贫液输送泵输运的贫液在贫富液换热器进行换热升温;升温后的富液进入解吸塔内,再生后的贫液经微波再沸器汽化后为解吸塔内的富液提供解吸能量,经微波再沸器汽化后的贫液与富液采用逆向接触,接触区域自上至下依次为带有超声波强化区的填料区、带有超声波强化区的催化区;解吸完的气混物经气液冷却器冷却和气液分离器气液分离后的液体继续注入解吸塔循环;降低了40%以上的能耗。本发明在催化剂协同超声波场/微波电磁场等外场作用下实现了二氧化碳低能耗解吸。

    一种基于Simulink和Fluent协同的燃烧装置控制方法

    公开(公告)号:CN119512256A

    公开(公告)日:2025-02-25

    申请号:CN202411528604.3

    申请日:2024-10-30

    Applicant: 浙江大学

    Abstract: 本发明提供一种基于Simulink和Fluent协同的燃烧装置控制方法,该方法包括以下步骤:在Fluent中导入燃烧装置mesh文件,初始化计算域并设定时间步长和总步长,开始Fluent求解;当计算收敛或达到设定迭代次数时,由Fluent UDF遍历燃烧装置网格计算平均温度,并将数据发送至Simulink S函数模块的服务端;将温度数据转换为温度时间序列值,计算该温度数据与预设特征温度曲线的差值,输入模糊PID控制器得到天然气入口流量变化量并输出控制参数,通过Simulink S函数模块将天然气入口流量变化量打包发送至Fluent UDF的客户端;据此调整天然气入口流量,从而使Fluent的边界条件获得更新,然后进行下一时间步长的计算,重复求解直至达到总迭代时间。本发明提高燃烧装置控制的准确性。

Patent Agency Ranking