一种基于GRU-CRF的命名实体识别方法

    公开(公告)号:CN108460012A

    公开(公告)日:2018-08-28

    申请号:CN201810102699.0

    申请日:2018-02-01

    Abstract: 本发明公开了一种基于GRU-CRF的命名实体识别方法,属于自然语言处理领域。为了进一步提高命名实体识别的识别效果,本发明将GRU网络与CRF相结合,利用GRU网络提取句子特征,再结合CRF进行最后的实体标注来完成命名实体识别。GRU具有参数少,训练速度快等特点,减少了对大规模数据进行训练时所用的时间,CRF对一个位置进行标注的过程中可以利用到已经标注的信息,具有很好的实体标注效果。本发明将GRU网络应用于命名实体识别领域,在达到标注效果的基础上减少了网络内部的参数,提高了训练效率,具有很好的应用前景,可以广泛应用于各领域的实体识别场合。

    EEMD‑Hilbert包络谱与DBN相结合的变负载下滚动轴承状态识别方法

    公开(公告)号:CN106886660A

    公开(公告)日:2017-06-23

    申请号:CN201710181336.6

    申请日:2017-03-23

    Abstract: 一种EEMD‑Hilbert包络谱与DBN相结合的变负载下滚动轴承状态识别方法,属于滚动轴承故障检测领域。为了解决针对训练数据采用一种负载,测试数据选用其他负载的情况下,滚动轴承故障状态及故障程度难以准确识别的问题。首先对滚动轴承各状态振动信号进行EEMD,然后选取敏感本征模态函数,并对其进行Hilbert变换求取包络谱。最后将各状态振动信号的IMF包络谱按顺序构建新的高维数据,输入到经遗传算法优化各隐藏层节点结构的DBN中,实现变负载下滚动轴承的多状态识别。在运用DBN进行滚动轴承10种状态识别过程中,训练数据采用某种负载,测试数据选用其他负载的情况下,EEMD‑Hilbert包络谱比时域或频域幅值谱能更好地体现出滚动轴承不同负载下的多状态特征,具有更高的识别率。

    一种滚动轴承故障位置及性能退化程度诊断方法

    公开(公告)号:CN102854015B

    公开(公告)日:2014-10-29

    申请号:CN201210389816.9

    申请日:2012-10-15

    Abstract: 一种滚动轴承故障位置及性能退化程度诊断方法,属于轴承故障诊断技术领域。解决了现有技术中的滚动轴承智能诊断方法存在故障位置及性能退化程度的诊断正确率较低,训练时间消耗大的问题。提出的集合经验模态分解方法中的加入白噪声准则,可避免人为确定分解参数,提高其分解效率;提出的基于超球球心间距的核参数优化方法,可确定多分类情况下,核参数的小而有效的搜索区间,从而减少训练时间,给出了分类器的最终状态超球模型。基于优化参数的集合经验模态分解和奇异值分解,再结合超球球心间距的核参数优化的超球多类支持向量机的智能诊断方法比已有的诊断方法识别率高。本发明主要应用于滚动轴承故障位置及性能退化程度的智能诊断。

    一种基于改进深度子域适应网络的变工况下滚动轴承故障诊断方法及系统

    公开(公告)号:CN114429150B

    公开(公告)日:2024-08-23

    申请号:CN202111521473.2

    申请日:2021-12-30

    Abstract: 一种基于改进深度子域适应网络的变工况下滚动轴承故障诊断方法及系统,涉及滚动轴承故障诊断技术领域,用以解决现有故障诊断模型对于不同工况分布差异大的振动数据的故障诊断准确率不高的问题。本发明的技术要点包括:对源域和目标域振动数据做短时傅里叶变换得到时频谱图;引入通道注意力机制和首层宽卷积核机制对残差网络进行改进,提取时频谱图中的深层特征;利用局部最大均值差异对源域特征和目标域特征进行子域适应处理,减小源域和目标域各个子域之间的分布差异,实现复杂工况下滚动轴承的故障诊断。本发明可以实现变工况及工况泛化情况下的滚动轴承故障诊断,具有较高的准确率。本发明可广泛应用于滚动轴承故障诊断之中。

    一种改进多头图注意力网络的滚动轴承故障诊断方法及系统

    公开(公告)号:CN118090214A

    公开(公告)日:2024-05-28

    申请号:CN202410200991.1

    申请日:2024-02-23

    Abstract: 本发明公开了一种改进多头图注意力网络的滚动轴承故障诊断方法及系统,涉及滚动轴承故障诊断技术领域。本发明的技术要点包括:根据元学习训练策略将样本集按多个任务划分,每个任务内样本集分为支持集和查询集;引入高斯原型模块和斯皮尔曼算法改进多头图注意力网络,完成支持集、原型集和查询集样本间的连接,实现轴承信号有向图的构造;将轴承信号有向图输入多头图注意力网络的图注意力层,以提取轴承状态特征;在元学习模型的任务内外循环过程中分别引入仿射变换和任务辅助损失,完成循环多次交替迭代,得到滚动轴承故障诊断模型。本发明增强了模型特征提取能力,减少了任务间差异对元学习模型最优参数确定的影响,提高了轴承故障诊断准确率。

    一种改进主动深度学习的高光谱图像半监督分类方法及装置

    公开(公告)号:CN113723492B

    公开(公告)日:2024-05-24

    申请号:CN202110978295.X

    申请日:2021-08-25

    Abstract: 一种改进主动深度学习的高光谱图像半监督分类方法及装置,涉及遥感图像处理技术领域,用以解决现有高光谱图像分类方法中存在的小样本情况下人工标记花费时间过长且分类效果不佳的问题。本发明的技术要点包括:利用有标签样本训练卷积神经网络,并利用卷积神经网络对无标签样本进行类别概率预测;根据预测的类别概率,利用主动学习策略计算获得其中信息量最大的无标签样本;引入随机多图算法对无标签样本进行标记,在伪标签候选池中寻找信息量大的样本作为新样本,将新样本加入训练集,对卷积神经网络的分类模型不断进行微调。本发明在降低标记成本的同时可以提高模型在小样本数据集上的分类性能,可应用于标签样本稀缺的高光谱遥感图像分类之中。

    一种二次聚合个性化联邦的滚动轴承寿命预测方法及系统

    公开(公告)号:CN118035844A

    公开(公告)日:2024-05-14

    申请号:CN202410231247.8

    申请日:2024-02-29

    Abstract: 一种二次聚合个性化联邦的滚动轴承寿命预测方法及系统,涉及滚动轴承寿命预测技术领域。本发明是针对不同工况下滚动轴承振动数据分布差异大,单一用户数据量少且多个用户间数据不共享的问题而提出的。该方法用不同深度的自编码器提取多尺度特征信息并压缩为散点图,实现特征增强;利用无监督二元回归模型确定第一预测时间,构建分段退化标签;提出二次聚合个性化联邦学习算法,各用户构建改进的CNN‑LSTM模型,并将其参数上传至服务端,服务端采用多任务学习框架,一次聚合多用户同种工况模型参数;在此基础上,利用批量归一化层参数统计信息计算一次聚合模型间相似度,引入权重更新机制指导模型参数二次聚合,减少不同工况模型间的负迁移现象并学习有益的全局知识,最终形成针对各工况的个性化预测模型。经实验验证,所提方法在保障数据隐私的前提下,可实现不同工况下滚动轴承寿命预测,预测平均得分与集中式学习方法相当、相较于联邦平均算法提升0.2197。

    一种无监督模型参数迁移的滚动轴承寿命预测方法

    公开(公告)号:CN112101220B

    公开(公告)日:2023-03-03

    申请号:CN202010971076.4

    申请日:2020-09-15

    Abstract: 一种无监督模型参数迁移的滚动轴承寿命预测方法,属于滚动轴承状态识别及剩余寿命预测技术领域。本发明针对实际中某种工况滚动轴承带标签振动数据获取困难,健康指标难以构建及寿命预测误差大的问题而提出的。该方法首先对滚动轴承全寿命周期振动数据提取均方根特征,并引入新的自下而上时间序列分割算法将特征序列分割为正常期、退化期和衰退期3种状态;对振动信号经快速傅里叶变换后的幅值序列进行状态信息标记,并作为改进全卷积神经网络的输入,提取深层特征,经训练构建源域模型和微调后的状态识别模型,实现滚动轴承多状态识别;利用状态概率估计法建立滚动轴承寿命预测模型。实验验证,所提方法无需构建健康指标,可实现无监督条件下不同工况滚动轴承状态识别和寿命预测,并获得较好的效果。

    一种基于改进多粒度级联森林的滚动轴承剩余寿命预测方法

    公开(公告)号:CN111680446B

    公开(公告)日:2022-11-15

    申请号:CN202010032285.2

    申请日:2020-01-11

    Abstract: 一种基于改进多粒度级联森林的滚动轴承剩余寿命预测方法,属于滚动轴承剩余寿命预测领域,解决现有人工智能方法在滚动轴承剩余寿命预测中存在精度差、运算效率低的问题。首先对由快速傅里叶变换得到的滚动轴承频域信号进行迭代计算,得到迭代特征。将多粒度级联森林中的多粒度扫描结构替换为卷积神经网络,利用卷积神经网络提取迭代特征的深层特征,并构建性能退化特征集。然后对可实现GPU并行加速的单一CatBoost模型进行集成,引入决定系数R2构建CasCatBoost结构以提高模型的表征能力,选取模型最后一个级联层的平均寿命百分比p表示输出。最后运用一次函数对p进行拟合,预测出轴承的剩余寿命。本方法具有较高的运算效率和预测精度。

Patent Agency Ranking