异面交叉快变轨道固定时间稳定姿态指向跟踪控制方法

    公开(公告)号:CN104527994A

    公开(公告)日:2015-04-22

    申请号:CN201510030643.5

    申请日:2015-01-21

    Abstract: 异面交叉快变轨道固定时间稳定姿态指向跟踪控制方法,本发明涉及异面交叉快变轨道稳定姿态指向跟踪控制方法。本发明为了解决现有技术未考虑航天器的惯量不确定性,依赖于状态初值,无法自由调整收敛时间,以及飞轮在奇异方向产生的补偿力矩需要人为设计的问题。具体是按照以下步骤进行的:步骤一、设追踪星与目标星位于异面交叉轨道上,需要确定期望姿态;步骤二、期望姿态跟踪控制律的设计;步骤三、消除期望姿态跟踪控制律的抖振;步骤四、追踪星与目标星轨道交叉点的期望姿态随追踪星与目标星轨道交叉点间的距离而变化,根据期望姿态跟踪控制律来确定执行机构的配置方案,求解期望姿态控制力矩。本发明应用于卫星控制领域。

    一种基于参数优化的航天器单脉冲水滴形绕飞轨迹悬停控制方法

    公开(公告)号:CN104309822A

    公开(公告)日:2015-01-28

    申请号:CN201410612686.X

    申请日:2014-11-04

    Abstract: 一种基于参数优化的航天器单脉冲水滴形绕飞轨迹悬停控制方法,属于航天器轨道控制技术领域。本发明解决了现有的定点悬停方法要求控制量是连续的;现有的单脉冲水滴形绕飞方法来实现悬停,没有考虑由于悬停时间较长,悬停在目标航天器轨道平面的追踪航天器的燃料消耗的问题。技术方案为:目标航天器处于圆形高轨轨道,相对位置范围有上下边界,本发明采用带参数优化的单脉冲水滴形绕飞轨迹方案来实现,在基于hill方程的相对运动坐标系下考虑,只要在使整个水滴形轨迹都满足悬停的位置范围要求基础上,找到使性能指标值即燃料消耗最小的方案即可。本发明主要用于航天器的轨道控制。

    一种挠性卫星模态参数在轨辨识方法

    公开(公告)号:CN103970964A

    公开(公告)日:2014-08-06

    申请号:CN201410222236.X

    申请日:2014-05-23

    Abstract: 一种挠性卫星模态参数在轨辨识方法,本发明涉及卫星模态参数在轨辨识领域,本发明要解决无法建立精确的动力学模型,频域法时效性低,难以辨识密频模态参数及获取阻尼信息使得估算、综合的参数存在误差,辨识精度降低以及时域法无法准确对模型定阶的问题而提出的一种挠性卫星模态参数在轨辨识方法。该方法是通过1、采集力矩和角速度信息;2、确定离散状态空间系统矩阵A、B、C和D;3、确定辨识矩阵A、B、C和D;4、建立动力学和帆板振荡方程;5、获得模态参数与力矩到角速度的传递函数;6、将矩阵A、B、C和D转换为传递函数等步骤实现的。本发明应用于卫星模态参数在轨辨识领域。

    一种风力机叶片主动振动控制方法、装置及设备

    公开(公告)号:CN115952731A

    公开(公告)日:2023-04-11

    申请号:CN202211640722.4

    申请日:2022-12-20

    Abstract: 一种风力机叶片主动振动控制方法、装置及设备,涉及风力发电技术领域,解决的技术问题为“如何使风力机叶片振动在有限时间收敛”,方法包括:采集风力机叶片结构参数;基于所述结构参数,建立风力机叶片状态空间模型;基于所述风力机叶片状态空间模型,定义第一控制误差和第二控制误差;对所述第一控制误差进行变换,得到变换误差;基于神经网络状态观测器,对所述风力机叶片状态空间模型进行观测得到观测量;根据所述第二控制误差、变换误差以及观测量定义目标函数,并根据所述目标函数得到控制参数;该方法采用有限时间预设性能理论设计误差变量并采用观测器进行观测,保证了风力机叶片稳定性和收敛时间有界,适用于风力机叶片振动控制场景。

    一种全景视频两帧行人轨迹预测方法、装置及存储介质

    公开(公告)号:CN115760928A

    公开(公告)日:2023-03-07

    申请号:CN202211689601.9

    申请日:2022-12-26

    Abstract: 本发明涉及一种全景视频两帧行人轨迹预测方法、装置及存储介质,其中方法包括:获取全景视频,提取全景视频中行人的位置信息、速度信息、动作信息和光流信息,将行人划分为自由移动行人和社交移动行人;计算自由行人数据集与全体行人数据集;使用训练完成网络进行行人轨迹预测,其中自由行人预测网络是基于自由行人数据集来训练,未来社交池化网络和社交行人预测网络是基于全体行人数据集来训练。本发明提供一种全景视频行人轨迹预测方法,构建以行人历史位置信息、历史动作信息和历史光流信息为输入的行人轨迹预测网络模型,以达到更高精度的行人轨迹预测的目标。

    一种基于有限时间观测器的非线性系统执行器鲁棒故障估计方法

    公开(公告)号:CN114815785A

    公开(公告)日:2022-07-29

    申请号:CN202210637971.1

    申请日:2022-06-07

    Abstract: 一种基于有限时间观测器的非线性系统执行器鲁棒故障估计方法,它属于非线性系统鲁棒故障估计领域。本发明解决了现有的有限时间观测器在进行非线性系统的故障估计时,未考虑未知输入干扰的问题。本发明方法所采取的主要技术方案为:步骤一、建立含有执行器故障和未知输入干扰的非线性系统模型;步骤二、对非线性系统模型进行解耦获得两个降阶的子系统模型;步骤三、分别基于两个子系统模型进行有限时间观测器的设计;步骤四、求解设计的有限时间观测器的设计参数;步骤五、基于设计的有限时间观测器以及求解出的设计参数对执行器故障进行估计。本发明方法可以应用于非线性系统执行器故障估计。

    基于自适应未知输入观测器的快速故障估计方法及设备

    公开(公告)号:CN113031570B

    公开(公告)日:2022-02-01

    申请号:CN202110289496.9

    申请日:2021-03-18

    Inventor: 马广富 郭延宁

    Abstract: 本发明的实施例提供了一种基于自适应未知输入观测器的快速故障估计方法及设备。所述方法包括建立动态控制系统的非线性系统模型;根据所述非线性系统模型的增广状态向量建立增广系统模型;根据所述增广系统模型建立自适应未知输入观测器,使所述自适应未知输入观测器满足第一条件;计算增广状态估计误差和执行器故障估计误差;通过线性矩阵不等式对所述自适应未知输入观测器进行误差优化,计算优化后的观测器参数;对所述非线性系统模型的执行器故障以及传感器故障进行估计。以此方式,可以使得动态控制系统在发生故障后,能够及时得到故障信息及具体的故障情况,在尽可能准确估计故障幅值的同时抑制外部干扰对故障估计结果的影响。

    天体着陆机构
    78.
    发明公开

    公开(公告)号:CN113071715A

    公开(公告)日:2021-07-06

    申请号:CN202110488683.X

    申请日:2021-04-30

    Abstract: 本发明公开了一种天体着陆机构,包括:主节点部,搭载有主发动机以及第一电机。多个副节点部,各副节点部搭载有着陆腿。多个连接部,各连接部分别将各副节点部连接到主节点部。主发动机驱动天体着陆机构升降。第一电机驱动多个副节点部以使其相对主节点部转动。连接部在与主节点部连接的第一端部以及与副节点部连接的第二端部中,至少其中一个设置为可多自由度运动。在天体着陆机构着陆时,多个副节点部以相同或者不同的姿态着陆,并且通过着陆腿着陆到小天体上。根据本发明的天体着陆机构,能够一定程度上抑制着陆时的弹跳,从而更加稳健地着陆。

    一种基于干扰观测器的挠性卫星轨迹线性化姿态控制方法

    公开(公告)号:CN105468007B

    公开(公告)日:2018-07-06

    申请号:CN201510874918.3

    申请日:2015-12-02

    Abstract: 一种基于干扰观测器的挠性卫星轨迹线性化姿态控制方法,本发明涉及基于干扰观测器的挠性卫星轨迹线性化姿态控制方法。本发明是为了解决单一的轨迹线性化控制方法对干扰的抑制能力不强、鲁棒性较差,未考虑到外部干扰以及挠性附件影响的问题。本发明用欧拉角描述航天器姿态,采用等效干扰的思想,建立挠性航天器动力学和运动学方程;忽略等效干扰的情况下求被控对象的伪逆,设计特定形式的准微分器,得到期望轨迹的名义控制;用比例—积分控制设计线性时变调节器。考虑等效干扰的影响,设计干扰观测器,保证挠性航天器的跟踪误差渐近收敛。本发明提高了系统的抗干扰能力,增强了系统的鲁棒性。本发明应用于挠性卫星的姿态控制领域。

    接近并跟踪空间非合作目标的有限时间容错控制方法

    公开(公告)号:CN105159304B

    公开(公告)日:2017-12-19

    申请号:CN201510363123.6

    申请日:2015-06-26

    Abstract: 接近并跟踪空间非合作目标的有限时间容错控制方法,属于轨道控制和姿态控制领域。现有追踪航天器的对非合作目标进行视线跟踪时存在追踪控制误差大导致的跟踪监视精度低的问题。一种接近并跟踪空间非合作目标的有限时间容错控制方法,在视线坐标系下建立动力学和运动学方程,考虑到系统的不确定性、非合作目标运动参数部分未知、控制输入饱和、死区等情况,利用RBF神经网络进行自适应估计和补偿,采用反步法思想设计控制器使追踪航天器在有限时间内收敛到期望的姿态和轨道并保持。本发明采用有限时间控制方法具有控制收敛快、鲁棒性好以及跟踪控制精度高的优点。

Patent Agency Ranking