基于端到端的相机与激光雷达标定方法、系统及介质

    公开(公告)号:CN113160330B

    公开(公告)日:2023-04-07

    申请号:CN202110411702.9

    申请日:2021-04-16

    Abstract: 本发明提供了一种基于端到端的相机与激光雷达标定方法、系统及介质,包括:步骤1:对相机RGB图像进行逐层特征提取;步骤2:对激光雷达点云数据进行逐层特征提取;步骤3:对提取的相机RGB图像特征和激光雷达点云数据特征进行融合;步骤4:基于融合后的特征进行逐层学习相应外参标定矩阵;步骤5:对每层的外参标定矩阵进行整合,得到最终的外参标定矩阵并进行标定。本发明提升了相机与激光雷达标定的精度,改善了传统卷积神经网络方法在由点云获得的深度特征提取上的误差问题,在特征融合方式上提出了新的融合方式,在自动驾驶等场景上有实际利用价值。

    基于端到端的相机与激光雷达标定方法、系统及介质

    公开(公告)号:CN113160330A

    公开(公告)日:2021-07-23

    申请号:CN202110411702.9

    申请日:2021-04-16

    Abstract: 本发明提供了一种基于端到端的相机与激光雷达标定方法、系统及介质,包括:步骤1:对相机RGB图像进行逐层特征提取;步骤2:对激光雷达点云数据进行逐层特征提取;步骤3:对提取的相机RGB图像特征和激光雷达点云数据特征进行融合;步骤4:基于融合后的特征进行逐层学习相应外参标定矩阵;步骤5:对每层的外参标定矩阵进行整合,得到最终的外参标定矩阵并进行标定。本发明提升了相机与激光雷达标定的精度,改善了传统卷积神经网络方法在由点云获得的深度特征提取上的误差问题,在特征融合方式上提出了新的融合方式,在自动驾驶等场景上有实际利用价值。

Patent Agency Ranking