-
公开(公告)号:CN108256457B
公开(公告)日:2021-06-04
申请号:CN201810017515.0
申请日:2018-01-09
Applicant: 东北大学
Abstract: 本发明涉及生物特征提取技术领域,是一种基于深度神经网络的心冲击信号深瓶颈特征提取方法,以心冲击信号为特征提取对象,针对其波形幅值微弱、易受外界干扰的特点,结合同步采集的心电信号,利用深度神经网络挖掘深层特征的机理,提取其深瓶颈特征参数。该特征以心冲击信号做为输入向量,同步心电信号做为目标向量,经过预先设计的9层神经网络进行训练以获取深瓶颈特征,实现心脏动力学性能与电生理特征的有机结合。该特征以日常较易获取的心冲击信号及心电信号做为研究对象,不仅能够克服常规波形特征参数对波形波动的依赖性,同时能够提高单一特征参数的表征性能,是一种应用深度学习理论进行日常心脏功能分析的新尝试。
-
公开(公告)号:CN108256457A
公开(公告)日:2018-07-06
申请号:CN201810017515.0
申请日:2018-01-09
Applicant: 东北大学
Abstract: 本发明涉及生物特征提取技术领域,是一种基于深度神经网络的心冲击信号深瓶颈特征提取方法,以心冲击信号为特征提取对象,针对其波形幅值微弱、易受外界干扰的特点,结合同步采集的心电信号,利用深度神经网络挖掘深层特征的机理,提取其深瓶颈特征参数。该特征以心冲击信号做为输入向量,同步心电信号做为目标向量,经过预先设计的9层神经网络进行训练以获取深瓶颈特征,实现心脏动力学性能与电生理特征的有机结合。该特征以日常较易获取的心冲击信号及心电信号做为研究对象,不仅能够克服常规波形特征参数对波形波动的依赖性,同时能够提高单一特征参数的表征性能,是一种应用深度学习理论进行日常心脏功能分析的新尝试。
-