一种基于多模态配准的脑功能融合分析方法

    公开(公告)号:CN114419015B

    公开(公告)日:2024-10-29

    申请号:CN202210084461.6

    申请日:2022-01-24

    Applicant: 东北大学

    Abstract: 一种基于多模态配准的脑功能融合分析方法,涉及医学,核磁共振成像以及计算机视觉领域。设计一个基于多模态配准的脑功能分析流程,首先对fMRI图像进行预处理,融合MRI图像清晰的结构信息和fMRI时序信号提供的功能信息。对fMRI的时序信息进行采样后训练形变场。最大可能保留原有fMRI的功能信息,同时使用递归的方案解决fMRI和MRI由于分辨率差距较大导致的配准难度大的问题。融合图像同时具有原始图像的功能和结构信息。使用fMRI的分析方法对融合后的图像进行功能分析。融合后的图像和原始结构sMRI图像的相似度高于现有方法,同时很好的融合了原始fMRI图像的功能信息。融合图像为后续脑结构和功能分析提供数据支持,做到结构分区和功能分区在同一坐标下一一对应。

    一种基于多模态配准的脑功能融合分析方法

    公开(公告)号:CN114419015A

    公开(公告)日:2022-04-29

    申请号:CN202210084461.6

    申请日:2022-01-24

    Applicant: 东北大学

    Abstract: 一种基于多模态配准的脑功能融合分析方法,涉及医学,核磁共振成像以及计算机视觉领域。设计一个基于多模态配准的脑功能分析流程,首先对fMRI图像进行预处理,融合MRI图像清晰的结构信息和fMRI时序信号提供的功能信息。对fMRI的时序信息进行采样后训练形变场。最大可能保留原有fMRI的功能信息,同时使用递归的方案解决fMRI和MRI由于分辨率差距较大导致的配准难度大的问题。融合图像同时具有原始图像的功能和结构信息。使用fMRI的分析方法对融合后的图像进行功能分析。融合后的图像和原始结构sMRI图像的相似度高于现有方法,同时很好的融合了原始fMRI图像的功能信息。融合图像为后续脑结构和功能分析提供数据支持,做到结构分区和功能分区在同一坐标下一一对应。

Patent Agency Ranking